Sustainable Design of Building Automation Systems

Presented By
Patrick Winkelman
V.P. Business Development
Distech Controls Inc.
Sustainable Design
Building Management Systems

• **Sustainability** is the capacity to endure (to continue in the same state)

• **REALITY** ! **Sustainability** is the capacity to continue in the same state as long as practical
The Value of Sustainability Building Management Systems

Why?

– Extended life = Greater ROI
– It is the nervous system of the Building
– Creating a better world
The Value of Sustainability Building Management Systems

Why? Less Obvious Reasons

• Reduction in energy cost
 – Poorly maintained, operated and malfunctioning BMS increases energy usage and demand rates

• Incorporate new technology
 – Artificial intelligence analytics
 – Smart curtailment programs
 – Graphical user interface
The Value of Sustainability Building Management Systems

Why? Less Obvious Reasons

• Reduction in Operating cost
 – Poorly operated and malfunctioning BMS increases operating costs

• Improved comfort

• Lower liability
Existing Expectation of a BMS

• **Existing life cycle of BMS is 10 years average**
 – Why
 • Planned obsolesce of manufacturer
 • Proprietary products
 • Lack of repair parts
 • Outdated operating systems
 • Advancing technology
 • Lack of available knowledge
 • Lack of available service

• **Potential life of the BMS should match that of the equipment it is controlling**
 – Mechanical and lighting systems life is 25 – 30 years
Expectations of a Sustainable BMS

- Continuous availability of the majority of system components (hardware and software) compatible with the original system
Expectations of a Sustainable BMS

• Availability of information
 – All information openly
 – Training
 – Leads to multiple sources of support, service and expansion
Expectations of a Sustainable BMS

• Expansion of the BMS
 – Newer BMS components need to be compatible with the older system components
 • Building level controllers
 • Field level controllers
Planning for a Sustainable BMS

• Require Open System Standards
 – Protocols
 – Certifications
 – Protocols in themselves do not always create an open system
Planning for a Sustainable BMS

• Require Open System Standards
 – One standard tool to manage different manufacturers’ devices equally
 – Interchangeable Network Controllers
Planning for a Sustainable BMS

- **Open System Business Practices**
 - By the Manufacturer and Controls System Integrator
 - Multiple Sources of Supply, Service and Support
 - Availability of training from multiple sources
 - Open Access to information

- Without the Manufacturer supporting an Open Solution through their business practices the sustainability of a system is diminished
Planning for a Sustainable BMS

- **Attention to Detail is Critical**
 - A partial Open System = a Less Sustainable System
 - Educate yourself
- **Define your needs and requirements upfront**
 - Create a master plan
- **Prequalify**
 - Consulting Engineer
 - Seek out Consulting Engineers who specialize in Building Automation
 - Building Automation Systems and underlying technology
 - System Integrator
- **Validate**
 - Look at examples of Open & Sustainable Building Automation Systems
 - In-depth review and verification of submittals and completed system
- **Make your own Decision**
 - Have the BAS proposal provided direct to the Owner or GC
 - Do not let the Mechanical Contractor make the decision for you

AN SUSTAINABLE BUILDING MANAGEMENT SYSTEM IS YOUR RESPONSIBILITY
St-Vincent Health System
A Sustainable BMS Example
St-Vincent Health System
A Sustainable BMS Example

• Located in the Little Rock Arkansas area
 – 5 Campuses
 – 1 Medical Office Building
 – Region wide network of Clinics
 – Second largest Catholic health system in the United States and the fifth largest US health system overall
The Challenge

- Multitude of Buildings with no centralized monitoring or practices
- Escalating energy and operating cost
- Obsolete HVAC equipment and building automation controls
 - Lack of knowledge
 - Single source for support and expansion
- Building technology decisions were being made by MEP and Mechanical Contractor with no long term Master Plan
- No integration among various systems and buildings
The Solution

• Owner involvement
 – Educated themselves on BAS Open System Solution
 – Worked with MEP firm and Local System Integrator to design new specifications
• Clear standards for BAS
 – LonTalk and LonMark controller, Niagara Framework for network management and Graphics
 – Prequalified System Integrators
 – BAS is provided as a separate quotation in Mechanical numbers.
 – Developed Master Plan for BAS for all facilities
The Implementation

• Phased replacement of the existing BAS with
 – Distech Controls EC-Net AX BAS and LonMark Certified controllers:
 • 600 + Controllers
 • 7,000 + points
 • Multiple Web user interfaces
 • Continued expansion to all facilities
 – Integration to existing systems where practical using LonTalk, BACnet and Modbus
 – Centralized management of all facilities
 • Scheduling
 • Alarm management
 • Service scheduling
 • Energy management
Customer Benefits

• Reduced cost of Operations
 – Energy savings of over $1 million annually since the start-up of the retrofit (2002)
 – Multiple and Competitive sources for expansion and service
 – More efficient workforce
 – Improved maintenance
 – Consistent improved performance of systems
 – Continuous optimization

• Consistent delivery of high standards of BAS

• Level of quality, convenience and comfort benefits all who work in or visit the facilities

• Improved sustainability of their operations
Innovative Solutions for Greener Buildings

Booth N4862
Sustainable Design of Building Automation Systems

Presented By
Patrick Winkelman
V.P. Business Development
Distech Controls Inc.

LONMARK assembles the pieces.
AHR Expo | January 31-February 2, 2011 | Las Vegas, Nevada
Sustainable Design
Building Management Systems

• **Sustainability** is the capacity to endure (to continue in the same state)

• **REALITY ! Sustainability** is the capacity to continue in the same state as long as practical
Energy, Efficiency, Sustainability: Best Practices

LONMARK assembles the pieces.

AHR Expo | January 31-February 2, 2011 | Las Vegas, Nevada
Savings That Are Not on the Spreadsheet

Asset protection

- worth 5% of real asset value
 - Real estate
 - Equipment

Indoor environmental quality and employee productivity

- worth 7% of labor cost
 - Ventilation
 - Conditioning
 - Lighting levels
 - Noise levels
Savings That Are Not on the Spreadsheet

Future-proof systems benefits

- Adaptability to the unplanned
- Business requirements response time
- Regulatory requirements/opportunities
- New conservation opportunities
- New technologies

Corporate cultural benefits

- Productivity and profit
Energy, Efficiency, Sustainability - Best Practices

Three Keys to Successful Real World LonWorks Implementations

LONMARK assembles the pieces.

AHR Expo | January 31-February 2, 2011 | Las Vegas, Nevada
Three Keys to Successful Real World LonWorks Implementations

• Understanding Customer Needs

• Designing a Solution to Match Those Needs

• Implementation
Understanding Customer Needs

- As proposed by the project sponsor.
- As specified in the project request.
- As designed by the senior architect.
- As produced by the engineers.
- As installed at the user's site.
- What the customer really wanted.
How Does Energy Impact Their Business?
How Does Energy Impact Their Business?

C-Store Energy Consumption

Quick Serve Restaurant Energy Consumption
What is Their Current Energy Strategy?

Mains Panel w/manual RTU controls & labels

All lighting is manually controlled by store personnel and is color coded.
What is Their Current Energy Strategy?
Designing a Solution to Fit Their Needs
Designing a Solution to Fit Their Needs

- HVAC
- Lighting
- Power Line Router
- LonWorks Server
- Kitchen Equipment
- Store Computer
- Corporate
- Remote Users, Service Agents, etc.
- Alert/Maintenance
- Equipment Stats
- Internal
- Interface
- LonMark Americas
Designing a Solution to Fit Their Needs
Designing a Solution to Fit Their Needs

<table>
<thead>
<tr>
<th>Zone</th>
<th>Current Temperature</th>
<th>Current Humidity</th>
<th>Temperature Setpoint</th>
<th>Supply Air Temperature</th>
<th>Heat / Cool Stages</th>
<th>Fan Status</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU-A Basement</td>
<td>70 °F</td>
<td>51 %</td>
<td>62 °F</td>
<td>73 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTU-B Kitchen S.</td>
<td>75 °F</td>
<td>50 %</td>
<td>75 °F</td>
<td>58 °F</td>
<td></td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>RTU-C Kitchen N.</td>
<td>77 °F</td>
<td>52 %</td>
<td>75 °F</td>
<td>67 °F</td>
<td></td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>RTU-D Stock Room</td>
<td>67 °F</td>
<td>50 %</td>
<td>65 °F</td>
<td>60 °F</td>
<td></td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>RTU-F Dining Room</td>
<td>75 °F</td>
<td>55 %</td>
<td>75 °F</td>
<td>76 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementation Strategy

- **Site Survey**
 Designing a survey process that is simple to follow
 Captures all critical information

- **Product Kitting**
 Bringing all product to a central location
 Powering up and testing before shipment to the site

- **Centralized Commissioning**
 Assembly line methodologies
 Use/Design automated tool sets
Implementation Strategy

- **Post check out**

 Process to test system after installation
 Ownership sign off

- **Training**

 Site training for all Owners/Managers
Value-Added Energy Solution Advisors

“We envision a world where everything electrical is interconnected into a single communicating network.”