The New ANSI/CTA 709.8 Advanced High-speed Power Line Communication Technology (HD-PLC) for Smart Cities and Buildings
 Speaker Bio

- More than 30 years experience in the high-tech sector
- Actively involved in the growth and advancement of various communication and networking technologies in the automation space for the past 15 years
- Founder and Board Member of the G3-PLC Alliance from 2011-2014
- Board Member of HomeGrid Alliance (G.hn) from 2008-2011

Michael V. Navid
Vice President
Megachips Corporation
mnavid@megachips.com
Tel: +1 (408) 515-5891
Skype: michael.Navid

MegaChips
Agenda

- HD-PLC Overview
 - Installation FAQ
- Fieldbus Core
- LON on HD-PLC
- BACnet on HD-PLC
- RS485 on HD-PLC and others
- Building automation aspects
...Is your network ready?
WHAT CUSTOMERS ARE ASKING?

- Higher bandwidths (>1Mbps)
- Support large number of nodes (1000+ nodes)
- Long range (1km+)
- IP based
- Security at every node
- Standards based
- Multi-source
- Interoperable
- Low cost
EXISTING TECHNOLOGIES REQUIRE DIFFICULT TRADEOFFS

SERIAL
Long range, but slow and limited nodes

POWERLINE (Narrowband)
Lowest deployment cost, but slow and unreliable

WIRELESS
Easy to deploy, but range is an issue

ETHERNET
Very fast, but cost can be prohibitive
ANSI/CTA 709.8 HD-PLC LEAPS PAST OTHER WIRELINE TECHNOLOGIES

This chart shows how HD-PLC stacks up against other wireline technologies. With multi-hop technology, HD-PLC is able to deliver broadband speeds over the long distances one normally expects to find in only low-speed approaches like RS-485.
Narrowband vs. Broadband PLC

Signal and Noise Level

Level (dB) vs. Freq.[Hz]

- NB PLC
- BPL
- HD-PLC

30dB noise level at different frequencies.

<500K Hz for NB PLC
2M Hz for BPL
28M Hz for HD-PLC
Wireline Options

<table>
<thead>
<tr>
<th>RS485</th>
<th>LONWorks</th>
<th>HD-PLC</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Daisy Chain</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Range</td>
<td>Long</td>
<td>Long</td>
<td>Long</td>
</tr>
<tr>
<td>PHY Rate</td>
<td>9.6Kbps</td>
<td><100kbps</td>
<td>240Mbps</td>
</tr>
<tr>
<td>Modulation</td>
<td>NRZ, etc</td>
<td>FSK, etc</td>
<td>OFDM</td>
</tr>
<tr>
<td># of nodes</td>
<td>32/256</td>
<td>127/32K*</td>
<td>1,024</td>
</tr>
</tbody>
</table>

LONWorks allows up to 32,385 in a single network, spread on various trunks. A trunk usually is limited to maximum 127 devices.
ADVANTAGES OF ANSI/CTA708.9

- Megabit Data Rates
- Ranges Up to Several km
- Up to 1024 Nodes
- Crypto-Strong Encryption
- IP-Based Mesh Networking
- Over ANY Wire
ANSI/CTA708.9 KEY SPECIFICATIONS

<table>
<thead>
<tr>
<th>Base Standards</th>
<th>IEEE1901-HDPLC/ITU G.9905</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>2 – 28MHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>Wavelet-OFDM</td>
</tr>
<tr>
<td>Data rate (Phy/MAC)</td>
<td>240Mbps/90Mbps</td>
</tr>
<tr>
<td>Message throughput</td>
<td>>200 packets/sec</td>
</tr>
<tr>
<td>Latency</td>
<td>~20ms</td>
</tr>
<tr>
<td>Encryption</td>
<td>AES 128</td>
</tr>
<tr>
<td>Error correction</td>
<td>Reed-Solomon/LDPC-CC</td>
</tr>
<tr>
<td>Media</td>
<td>Twisted Pair, COAX, AC/DC Power Lines, Ethernet</td>
</tr>
<tr>
<td>IP Support</td>
<td>IPv6 (IETF)</td>
</tr>
</tbody>
</table>

For more information see: www.megachips.com/products/plc-communications/
THE FASTEST WAY TO BUILD ROBUST, LONG-RANGE, HIGH-SPEED NETWORKS

QuickMesh with Multi-hop
- Every node can act as a repeater
- Plug-and-play mesh networking
- Fast authentication times

Dynamic Optimization
- Periodically exchanges Hello message to calculate and maintain best route
- Self-optimizing and self-healing

Free Topology
- Master handles all transactions between terminals
- Dramatically reduces traffic, enabling larger networks

Automatic Routing
- Calculates link cost of each path to determine best path
- Automatically calculates lowest route cost for each node

ITU G.9905 CMSR
SIMPLE BRIDGING ENABLES SYSTEM CONVERGENCE
A SMARTER COMMUNICATIONS PROTOCOL
ANSI/CTA 708.9 Silicon and Products

- Chips and Development Kits
 - Panasonic
 - MegaChips

- Products

- Gesytec
- xingtera
- MITSUMI
- Panasonic
- VS Lighting Solutions
- Nuri Telecom
- GigaFast
- PMS

, and more…
LON HD-PLC Diagnostics Tools

- Each device is an analyzer
 - Performance data
 - Signal spectrum
 - Topology
 - Configuration settings
 - Software update

List of network node is available.

CINR of each node can be confirmed.

Network configuration by topology and communication quality of each node can be confirmed.
POPULAR APPLICATIONS

- HVAC
- POS Systems
- Video entry
- Lighting Automation
- Solar Inverters
- Security Systems
Speaker Bio

- 30 years experience in communication systems
- LON specialist since 1995
- LonMark International Vice Chair since 2016
- Chair of German Marketing Task Group
- CEN/TC247 WG4 member

Matthias Lürkens
Gesytec GmbH (Germany)
Chief Technical Officer
matthias.luerkens@gesytec.de
+49 2408 944 0
Agenda

- HD-PLC Overview
- Installation FAQ
- Fieldbus Core
- LON on HD-PLC
- BACnet on HD-PLC
- RS485 on HD-PLC and others
- Building automation aspects
Installation FAQ
Installation

- Basics
 - Wiring
 - Master/terminal function
- HD-PLC Extended
 - Pairwise key for authentication
 - Whitelist for devices

- DIP switch
- Master/terminal
- Power line

- RS485
- Ethernet
Installation

- Basics
 - Wiring
 - Master/terminal function
- HD-PLC Extended
 - Pairwise key for authentication
 - Whitelist for devices
- Functions
 - Baud rate for RS485
 - IP-address
 - CNP-HD-PLC master
 - lonip/CNP-HD-PLC router
 - And more
Blockers

▪ wanted
▪ Filter 2-40 MHz
 - e.g. EMC filter
 - 80 db attenuation blocks completely
▪ unwanted
▪ Different phases
▪ Transformers
▪ Circuit breakers
▪ Residual current breakers
Jump over the ditch

- Phase coupler
 - E.g. Homeplug AV
- Capacitive
- Inductive/capacitive
 - Residual current breaker
 - Meter
- HD-PLC repeater
 - Bridges pairwise

PLC-A ➔ Ethernet ➔ PLC-B
Redundant master

- Automatic Master Transition
Dual Master

Master 1 <-> ETH <-> Master 2 <-> Terminal C <-> Terminal D <-> Terminal Z

Master 1 (inactive) <-> ETH <-> Master 2 <-> Terminal C <-> Terminal D <-> Terminal Z
Analysis

- Each device is an analyzer
 - With Ethernet port

- Device list
- Topology
- Performance
- CNR
- Iperf/jperf
Topology/PHY rate
Iperf/jperf
Testing
Fieldbus on HD-PLC
Fieldbus Core

User Application

Fieldbus Client API

I/O driver

UART

Fieldbus Stack

(Fieldbus, BACnet, ...)

Fieldbus Server API

UDP/TCP

IP

UART

HD-PLC

http
ssl
tls

I/O

Application CPU

serial

HD-PLC CPU

Fieldbus API

UART

Fieldbus Client API

User Application

HD-PLC CPU

I/O

Application CPU

serial
Development Kit

- 12 digital I/O
 - Input
 - Output
 - I2C/SPI/UART
- 2 analog in
- 2 analog out
- Debug
- Protocol independent
CTA-709.8

- Project State: Approved
- 85% complete
- Estimated Complete: 2020-01-31

- Europe: EN 14908-8
 - Final vote
 - April 2020 CEN meeting
<table>
<thead>
<tr>
<th>CTA-709 orchestra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA-709.1</td>
<td>Control Network Protocol Specification</td>
</tr>
<tr>
<td>CTA-709.2</td>
<td>Control Network Power Line (PL) Channel Specification</td>
</tr>
<tr>
<td>CTA-709.3</td>
<td>Free-Topology Twisted-Pair Channel Specification</td>
</tr>
<tr>
<td>CTA-709.4</td>
<td>Fiber-Optic Channel Specification</td>
</tr>
<tr>
<td>CTA-709.5</td>
<td>Implementation Application Layer Guidelines</td>
</tr>
<tr>
<td>CTA-709.6</td>
<td>Application Elements</td>
</tr>
<tr>
<td>CTA-709.7</td>
<td>Communication via Internet Protocols (lonip)</td>
</tr>
<tr>
<td>CTA-709.8</td>
<td>High Definition Power Line Channel Specification (CNP/HD-PLC)</td>
</tr>
<tr>
<td>CTA-852</td>
<td>Tunneling Device Area Network Protocols Over Internet Protocol Channels</td>
</tr>
<tr>
<td>OSI Level</td>
<td>Layer Type</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>OSI-7</td>
<td>Application</td>
</tr>
<tr>
<td>OSI-6</td>
<td>Presentation</td>
</tr>
<tr>
<td>OSI-5</td>
<td>Session</td>
</tr>
<tr>
<td>OSI-4</td>
<td>Transport</td>
</tr>
<tr>
<td>OSI-3</td>
<td>Network</td>
</tr>
<tr>
<td>OSI-1</td>
<td>Physical layer</td>
</tr>
</tbody>
</table>

Software Protocol Stack

- 709-6
- 709-1 / 709-5

Hardware

- Transceiver
- FPGA / RF-chip
- Media converter
CTA-709.8 details

- **Master device**
 - Spreads messages to the nodes
 - Identical with the HD-PLC master
 - HD-PLC devices know the master
 - Simplifies installation
 - Needs to have own IP address

- **Aggregation**
 - IP is not perfect for ping pong with small messages
 - CTA-852 already implements aggregation
 - Remember tcp_nodelay
CTA-709.8 Master

Diagram showing the connections between Master A and Terminals B, C, D, and E.
CTA-709.8 aggregation
CTA-709.8 devices

- Vossloh Schwabe outdoor luminaire controller
- Gesytec development kit
- Gesytec HD-PLC bridge
 - 709.8 master
 - Bridging Ethernet and RS485
 - Connects Adesto Smart Server to HD-PLC
 - Connects Easylon Router to HD-PLC
- Demo with SmartServer and VS outdoor luminaire controller
BACnet/HD-PLC

- Introduce free topology with high speed
- Simplify IP based BACnet
 - No switches
 - Longer distance
- Substitute MSTP
 - Enhance reliability
 - Reuse wiring
 - Performance upgrade
BACnet

BACNet Application Layer (APDU)

BACnet Network Layer (NPDU)

ISO 8802-02
LON
PTP
MSTP
IP
UDP
RS 232
RS 485
IP Link
LON FT 709.7

SC

Application (7)
Presentation (6)
Session (5)

Transport (3)

Data-Link (2)

Physical (1)
BACnet

BACNet Application Layer (APDU)

Transport

BACnet Network Layer (NPDU)

IP

UDP

IP Link

IP on HD-PLC

Generic HD-PLC
BACnet/HD-PLC

<table>
<thead>
<tr>
<th></th>
<th>Mandatory / optional</th>
<th>Breakout board</th>
<th>eShark LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary input</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Binary output</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Analog input</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analog output</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analog value</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Device Object

<table>
<thead>
<tr>
<th>Property ID</th>
<th>Data Type</th>
<th>Element count</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>OBJECT_IDENTIFIER</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>OBJECT_NAME</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>SYSTEM_STATUS</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROT_SERVICES_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROT_OBJ_TYPES_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>VENDOR_NAME</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>VENDOR_IDENTIFIER</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>MODEL_NAME</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>LOCATION</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>FIRMWARE_REVISION</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROTOCOL_REVISION</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>MAX_APDU_LENGTH_ACCEPTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>SEGMENTATION_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>OBJECT_LIST</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROPERTY_LIST</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>APDU_TIMEOUT</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>NUMBER_OF_APDU_RETRIES</td>
</tr>
<tr>
<td>RW</td>
<td>R</td>
<td></td>
<td>DEVICE_ADDRESS_BINDING</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>DATABASE_REVISION</td>
</tr>
</tbody>
</table>

Device Object

<table>
<thead>
<tr>
<th>Property ID</th>
<th>Data Type</th>
<th>Element count</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>OBJECT_IDENTIFIER</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>OBJECT_NAME</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>SYSTEM_STATUS</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROT_SERVICES_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROT_OBJ_TYPES_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>VENDOR_NAME</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>VENDOR_IDENTIFIER</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>MODEL_NAME</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>LOCATION</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>FIRMWARE_REVISION</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROTOCOL_REVISION</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>MAX_APDU_LENGTH_ACCEPTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>SEGMENTATION_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>OBJECT_LIST</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROPERTY_LIST</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>APDU_TIMEOUT</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>NUMBER_OF_APDU_RETRIES</td>
</tr>
<tr>
<td>RW</td>
<td>R</td>
<td></td>
<td>DEVICE_ADDRESS_BINDING</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>DATABASE_REVISION</td>
</tr>
</tbody>
</table>

Device Object

<table>
<thead>
<tr>
<th>Property ID</th>
<th>Data Type</th>
<th>Element count</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>OBJECT_IDENTIFIER</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>OBJECT_NAME</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>SYSTEM_STATUS</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROT_SERVICES_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROT_OBJ_TYPES_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>VENDOR_NAME</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>VENDOR_IDENTIFIER</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>MODEL_NAME</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>LOCATION</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>FIRMWARE_REVISION</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROTOCOL_REVISION</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>MAX_APDU_LENGTH_ACCEPTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>SEGMENTATION_SUPPORTED</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>OBJECT_LIST</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROPERTY_LIST</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>APDU_TIMEOUT</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td></td>
<td>NUMBER_OF_APDU_RETRIES</td>
</tr>
<tr>
<td>RW</td>
<td>R</td>
<td></td>
<td>DEVICE_ADDRESS_BINDING</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>DATABASE_REVISION</td>
</tr>
</tbody>
</table>

Device Object
e.g. Binary Input Object

<table>
<thead>
<tr>
<th>Bacnet R/W</th>
<th>App R/W</th>
<th>Persistent</th>
<th>Property ID</th>
<th>Data Type</th>
<th>Element count</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>OBJECT_IDENTIFIER</td>
<td>OBJECT_IDENTIFIER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>OBJECT_NAME</td>
<td>CHAR_STRING</td>
<td>1</td>
<td>Binary-Input #1</td>
</tr>
<tr>
<td>RW conditional</td>
<td>RW</td>
<td>y</td>
<td>PRESENT_VALUE</td>
<td>ENUMERATED</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RW</td>
<td>RW</td>
<td>y</td>
<td>DESCRIPTION</td>
<td>CHAR_STRING</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>RW</td>
<td></td>
<td>DEVICE_TYPE</td>
<td>CHAR_STRING</td>
<td>1</td>
<td>Binary-Input-DevType #1</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>STATUS_FLAGS</td>
<td>SHORT_BIT_STRING</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>EVENT_STATE</td>
<td>ENUMERATED</td>
<td>1</td>
<td>STATE_NORMAL</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>RELIABILITY</td>
<td>ENUMERATED</td>
<td>1</td>
<td>NO_FAULT_DETECTED</td>
</tr>
<tr>
<td>RW</td>
<td>R</td>
<td>y</td>
<td>OUT_OF_SERVICE</td>
<td>BOOLEAN</td>
<td>1</td>
<td>FALSE</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>PROPERTY_LIST</td>
<td>ENUMERATED</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>POLARITY</td>
<td>ENUMERATED</td>
<td>1</td>
<td>NORMAL</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>INACTIVE_TEXT</td>
<td>CHAR_STRING</td>
<td>1</td>
<td>off</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td>ACTIVE_TEXT</td>
<td>CHAR_STRING</td>
<td>1</td>
<td>on</td>
</tr>
</tbody>
</table>
Works already

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>22</td>
<td>eShark Test App</td>
<td>Device</td>
<td>Gesytec GmbH</td>
<td>704</td>
<td>eShark, HDPLC-BACnet</td>
<td>FW 1.3</td>
<td>SW 2.56</td>
<td>1</td>
<td>14</td>
<td>9 Element(s) in use</td>
<td>6 Element(s) in use</td>
<td>10000</td>
</tr>
</tbody>
</table>

System Status: [0, Operational]
Database Revision: 2
Device Addr. Binding: 0 Element(s)
Active CCV Subscript: [0] NULL
Active VT Sessions
Last Restart Reason
Time Of Day. Restart
BACnet/HD-PLC Router

- Media converter for BACnet/IP on HD-PLC
- BACnet Router for native BACnet/HD-PC
Roadmap

- BACnet plug fest May 2020 in Germany
 - eShark development kit with BACnet/IP on HD-PLC
 - Gesyline HD-PLC DIN rail bridge
RS485 on HD-PLC

- Free topology for RS485
- Large distances
- Enhances reliability
 - Grounding issues
 - Distance issues
- Different baud rates for trunks
- Restrictions
 - No low latency protocols like BACnet/MSTP or profibus
BACnet on RS485
Other field bus systems

- IP based protocols
 - KNX/IP, Modbus/TCP, proprietary

- Protocols using UARTs
 - KNX, DALI, proprietary

- Aspects
 - Serial: latency / handshake / baudrate
 - IP: multicast / message size
Building automation aspects
Building Automation Aspects

- Performance boost on existing wiring
 - Save cost
 - Fire load does not change
- Runs in parallel with legacy devices on same wire
 - Easy migration
- Runs on power cables
 - No new wiring
 - Puts communication where it is needed
Thank You

Michael Navid
MegaChips Corporation
mnavid@megachips.com
+1 (408) 515-5891
Skype: michael.navid

Matthias Lürkens
Gesytec GmbH
matthias.luerkens@gesytec.de
+49 (2408) 944 0
Skype: matthias.luerkens