LONMARK®
Functional Profile: Automatic Transfer Switch
Overview

This document describes the functional profile of an Automatic Transfer Switch (ATS) object. The ATS object does not require other nodes for operation. The object is self-contained but may be monitored and controlled by other nodes. An ATS is a piece of electrical equipment that is used to monitor and automatically connect the best of two power sources to an electrical load. Normally at least one of the two power sources is a generator set that is directed by the ATS to start when the primary power source has failed.

The electrical load may be connected to Source 1, Source 2, both Source 1 and Source 2 or disconnected from both sources. This document will refer to Source 1 as the primary or normal power source and Source 2 as the alternate or emergency power source. Source 1 is the preferred power source and the ATS will connect the electrical load to Source 1 if it is “available.” Available implies the power source is within an allowable voltage and frequency range. The figure below shows the functional implementation of an Automatic Transfer Switch.

![Diagram of Automatic Transfer Switch](image)

Figure 1.1 Automatic Transfer Switch

The Functional Profile is shown below.
Example Usage

The Automatic Transfer Switch object may interact with one or more of the following LONMARK devices:
- Generator Set node
- Supervisory node (Master Controller)
- Annunciation Panel node
- Circuit Breaker node

Figure 1.2 Automatic Transfer Switch Object

Figure 1.3 Example Usage of Automatic Transfer Switch Object
Figure 1.4 Automatic Transfer Switch Object Details
<table>
<thead>
<tr>
<th>NV # (M/O)*</th>
<th>Name</th>
<th>In/Out</th>
<th>SNVT Type (SNVT Index)</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (M)</td>
<td>nviTestCmd</td>
<td>In</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>allow an external node to test the ATS operation</td>
</tr>
<tr>
<td>2 (M)</td>
<td>nvo Src2StartCmd</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>allow the ATS to start and stop the alternate or emergency power source</td>
</tr>
<tr>
<td>3 (M)</td>
<td>nvo Src1Available</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>indicate the availability of the normal power source (GenSet/Source 1)</td>
</tr>
<tr>
<td>4 (M)</td>
<td>nvo Src2Available</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>indicate the availability of the emergency power source (GenSet/Source 2)</td>
</tr>
<tr>
<td>5 (M)</td>
<td>nvo Src1Connected</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>indicate the switch position of the ATS</td>
</tr>
<tr>
<td>6 (M)</td>
<td>nvo Src2Connected</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>indicate the switch position of the ATS</td>
</tr>
<tr>
<td>7 (O)</td>
<td>nvi FaultReset Cmd</td>
<td>In</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>reset or attempt to clear an ATS fault</td>
</tr>
<tr>
<td>8 (O)</td>
<td>nvi LoadShedCmd</td>
<td>In</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>shed the electrical load of the ATS</td>
</tr>
<tr>
<td>9 (O)</td>
<td>nvi TransInhCmd</td>
<td>In</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>inhibit the ATS from automatically transferring the load to the emergency power source (Source 2), when Source 2 becomes available</td>
</tr>
<tr>
<td>10 (O)</td>
<td>nvi RetransInh Cmd</td>
<td>In</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>inhibit the ATS from automatically transferring the load back to the normal power source (Source 1), when Source 1 becomes available</td>
</tr>
<tr>
<td>11 (O)</td>
<td>nvi OverrideCmd</td>
<td>In</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>override a transfer or retransfer time delay, or transfer or retransfer inhibit</td>
</tr>
<tr>
<td>12 (O)</td>
<td>nvo Src1StartCmd</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>allow the ATS to start and stop the Source 1</td>
</tr>
<tr>
<td>13 (O)</td>
<td>nvo FaultStatus</td>
<td>Out</td>
<td>SNVT_switch (95)</td>
<td>I/O</td>
<td>reports the presence of an ATS fault</td>
</tr>
<tr>
<td>14 (O)</td>
<td>nvo Src1Frequency</td>
<td>Out</td>
<td>SNVT_freq_hz (76)</td>
<td>I/O</td>
<td>line frequency of Source 1</td>
</tr>
<tr>
<td>15 (O)</td>
<td>nvo Src2Frequency</td>
<td>Out</td>
<td>SNVT_freq_hz (76)</td>
<td>I/O</td>
<td>line frequency of Source 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>(O)</td>
<td>nvo</td>
<td>Src1VoltageLL</td>
<td>Out</td>
<td>SNVT_VOLT_AC (138)</td>
</tr>
<tr>
<td>17</td>
<td>(O)</td>
<td>nvo</td>
<td>Src2VoltageLL</td>
<td>Out</td>
<td>SNVT_VOLT_AC (138)</td>
</tr>
<tr>
<td>18</td>
<td>(O)</td>
<td>nvo</td>
<td>Src1VoltageLN</td>
<td>Out</td>
<td>SNVT_VOLT_AC (138)</td>
</tr>
<tr>
<td>19</td>
<td>(O)</td>
<td>nvo</td>
<td>Src2VoltageLN</td>
<td>Out</td>
<td>SNVT_VOLT_AC (138)</td>
</tr>
<tr>
<td>20</td>
<td>(O)</td>
<td>nvo</td>
<td>LoadCurrent</td>
<td>Out</td>
<td>SNVT_AMP_AC (139)</td>
</tr>
<tr>
<td>21</td>
<td>(O)</td>
<td>nvo</td>
<td>LoadPF</td>
<td>Out</td>
<td>SNVT_PWR_FACT (98)</td>
</tr>
<tr>
<td>22</td>
<td>(O)</td>
<td>nvo</td>
<td>LoadRealPower</td>
<td>Out</td>
<td>SNVT_POWER_F (57)</td>
</tr>
<tr>
<td>nc49</td>
<td>(O)</td>
<td>nci</td>
<td>MaxSendTime</td>
<td>-</td>
<td>SNVT_TIME_SEC (107)</td>
</tr>
<tr>
<td>nc17</td>
<td>(O)</td>
<td>nci</td>
<td>Location</td>
<td>-</td>
<td>SNVT_STR_ASC (36)</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional
Table 2 SCPT Details

<table>
<thead>
<tr>
<th>SCPT Index (M/O)*</th>
<th>Name</th>
<th>Association **</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nci49 (O)</td>
<td>SCPTmaxSendTime</td>
<td>nv14 (O), nv15 (O), nv16 (O), nv17 (O), nv19 (O), nv20 (O), nv21 (O), nv22 (O)</td>
<td>maximum period of time that expires before the ATS object will automatically update NVs</td>
</tr>
<tr>
<td></td>
<td>nciMaxSendTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_time_sec (107)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nci17 (O)</td>
<td>SCPTLocation</td>
<td>nv0</td>
<td>used to provide physical location of the node</td>
</tr>
<tr>
<td></td>
<td>nciLocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNVT_str_asc (36)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

** List of NVs to which this configuration property applies. NV index = 0 means configuration property applies to the object as a whole (nv0).
Mandatory Network Variables

Test Command Input

```
network input SNVT_switch   nviTestCmd;
```

This input network variable is available to allow an external node to test the operation of the ATS. This input is mandatory but does not have to be bound to an external node. When state = 1, the transfer switch will begin a test of normal power source (Source 1) failure. When state = 0, the transfer switch will end the test and resume normal operation. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>End Test</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Start Test</td>
</tr>
</tbody>
</table>

Default Value

state: 0 (End Test)
value: 0

Start Source 2 Command Output

```
network output SNVT_switch   nvoSrc2StartCmd;
```

This output network variable is available to allow the ATS to start and stop the alternate or emergency power source (Source 2, e.g. generator set). This output would be used when the ATS has detected the primary power source (Source 1) has failed or when the ATS is executing a test of Source 1 failing. This input is mandatory but does not have to be bound to an external node.

When state = 1, the ATS is requesting the alternate power source to start running. When state = 0, the ATS is instructing the alternate power source to stop running. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Stop Source 2</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Start Source 2</td>
</tr>
</tbody>
</table>
Default Value
state: 0 (Stop)
value: 0

Source 1 Available Output
network output SNVT_switch nvoSrc1Available;

This output network variable is available to indicate the availability of the normal power source (Source 1). When state = 1, the normal power source (Source 1) is available for loading. When state = 0, Source 1 has either failed or is not available for loading. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Source 1 Available</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Source 1 NOT Available</td>
</tr>
<tr>
<td>0xFF</td>
<td>NA</td>
<td>Source 1 Unknown</td>
</tr>
</tbody>
</table>

Default Value
state: 0xFF (Unknown)
value: 0

Source 2 Available Output
network output SNVT_switch nvoSrc2Available;

This output network variable is available to indicate the availability of the emergency power source (Source 2). When state = 1, the emergency power source (Source 2) is available for loading. When state = 0, Source 2 has either failed or is not available for loading. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Source 2 Available</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Source 2 NOT Available</td>
</tr>
<tr>
<td>0xFF</td>
<td>NA</td>
<td>Source 2 Unknown</td>
</tr>
</tbody>
</table>
Default Value
state: 0xFF (Unknown)
value: 0

Source 1 Connected Output
network output SNVT_switch nvoSrc1Connected;

This output network variable is available to indicate the switch position of the ATS. This input is mandatory but does not have to be bound to an external node. When state = 1, the ATS load is connected to the normal power source (Source 1). When state = 0, the ATS load is not connected to Source 1. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Load NOT connected to Source 1</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Load connected to Source 1</td>
</tr>
<tr>
<td>0xFF</td>
<td>NA</td>
<td>Source 1 Unknown</td>
</tr>
</tbody>
</table>

Default Value
state: 0xFF (Unknown)
value: 0

Source 2 Connected Output
network output SNVT_switch nvoSrc2Connected;

This output network variable is available to indicate the switch position of the ATS. This input is mandatory but does not have to be bound to an external node. When state = 1, the ATS load is connected to the emergency power source (Source 2). When state = 0, the ATS load is not connected to Source 2. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Load NOT connected to Source 2</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Load connected to Source 2</td>
</tr>
<tr>
<td>0xFF</td>
<td>NA</td>
<td>Source 2 Unknown</td>
</tr>
</tbody>
</table>
Default Value

state: 0xFF (Unknown)
value: 0
Optional Network Variables

Fault Reset Command Input

(network input SNVT_switch nviFaultResetCmd)

This input network variable is available to allow an external node to reset or attempt to clear an ATS fault. This input is mandatory but does not have to be bound to an external node. When state = 1, the ATS will clear all active faults. When state = 0, the ATS will do nothing. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Reset Fault</td>
</tr>
</tbody>
</table>

Default Value

state: 0
value: 0

Load Shed Command Input

(network input SNVT_switch nviLoadShedCmd)

This input network variable is available to allow an external node to shed the electrical load of the ATS. This input is only applicable when the ATS load is connected to the emergency power source (Source 2). That is, this input is not valid when the ATS is connected to the normal power source (Source 1). This input is mandatory but does not have to be bound to an external node.

When the transfer switch is connected to Source 2 and state = 1, the transfer switch will disconnect from the load. When state = 0, the transfer switch will re-connect to Source 2. The ‘value’ field is not used.

The optional ‘override’ input cannot be used to defeat the load shed command.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Restore Load</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Shed Load</td>
</tr>
</tbody>
</table>
Default Value

state: 0 (Restore Load)
value: 0

Transfer Inhibit Command Input

network input SNVT_switch nviTransInhCmd;

This input network variable is available to allow an external node to inhibit the ATS from automatically transferring the load to the emergency power source (Source 2), when Source 2 becomes available. This input is only applicable when the ATS load is connected to the normal power source (Source 1). Once the ATS has disconnected from Source 1, this input is not available. This input is mandatory but does not have to be bound to an external node.

When the ATS is connected to Source 1 and state = 1, the ATS will be disabled from automatically transferring load to the emergency power source (Source 2). The ATS load would then have to be manually transferred (to Source 2). When state = 0, the ATS may automatically transfer load to Source 2 when it becomes available. The ‘value’ field is not used.

The optional ‘override’ input may be used to defeat the transfer inhibit command.

Valid Range

<table>
<thead>
<tr>
<th>State</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Automatic Transfer Enabled</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Automatic Transfer Inhibited</td>
</tr>
</tbody>
</table>

Default Value

state: 0 (Automatic Transfer Enabled)
value: 0

Retransfer Inhibit Command Input

network input SNVT_switch nviRetransInhCmd;

This input network variable is available to allow an external node to inhibit the ATS from automatically transferring the load back to the normal power source (Source 1), when Source 1 becomes available. This input is only applicable when the ATS load is connected to the emergency power source (Source 2). Once the ATS has disconnected from Source 2, this input is not available.
When the ATS is connected to Source 2 and state = 1, the ATS will be disabled from automatically transferring load back to the normal power source (Source 1). The ATS load would then have to be manually re-transferred (back to Source 1). When state = 0, the ATS may automatically transfer load back to Source 1 when it becomes available. The ‘value’ field is not used.

The optional ‘override’ input can be used to defeat the retransfer inhibit command.

Valid Range

<table>
<thead>
<tr>
<th>State</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Automatic Retransfer Enabled</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Automatic Retransfer Inhibited</td>
</tr>
</tbody>
</table>

Default Value

state: 0 (Automatic Retransfer Enabled)

value: 0

Override Command Input

network input SNVT_switch nviOverrideCmd;

This input network variable is available to allow an external node to override a transfer or retransfer time delay, or transfer or retransfer inhibit. When state = 1, the ATS will remove all inhibits and expire any transfer or retransfer time delays, allowing immediately transfer or retransfer. When state = 0, the ATS will do nothing. The ‘value’ field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Transfer or Retransfer Immediately</td>
</tr>
</tbody>
</table>

Default Value

state: 0

value: 0

Start Source 1 Command Output

network input SNVT_switch nvoSrc1StartCmd;
This output network variable is available to allow the ATS to start and stop the Source 1. This output would be used in critical applications where the emergency power source is comprised of two generator sets (for redundancy). If one of the emergency power sources should fail, an alternate would be available. If the emergency power source is required for an extensive period, the ATS may choose to 'rotate' the load between the two sources. In either scenario, an additional start command is needed to independently start each generator set.

When state = 1, the ATS is requesting the primary power source (Source 1) to start running. When state = 0, the ATS is instructing the primary power source to stop running. The 'value' field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Stop Source 1</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Start Source 1</td>
</tr>
</tbody>
</table>

Default Value

state: 0 (Stop)
value: 0

Fault Status Output

network input SNVT_switch nvoFaultStatus;

This output network variable will report the presence of an ATS fault. When state = 1, the ATS has detected a fault condition. When state = 0, no faults are present at the ATS or all faults have been cleared. The 'value' field is not used.

Valid Range

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>No Fault</td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>Fault condition exists</td>
</tr>
</tbody>
</table>

Default Value

state: 0xFF (INVALID), indicating Fault Status is unknown.
value: 0

When Transmitted
The output variable is transmitted:
Upon node reset, after obtaining valid data.
· When the fault status has changed.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Source 2 Frequency Output
network output SNVT_freq_hz nvoSrc2Frequency;

This output network variable will report the line frequency of Source 2.

Valid Range
The valid range is 0 to 6553.4 Hz.

Default Value
The default value is 0xFFFF (6553.5 Hz), indicating the frequency is unknown.

When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.

Source 1 Line-to-Line Voltage Output
network output SNVT_volt_ac nvoSrc1VoltageLL;

This output network variable will report the line-to-line voltage(s) of Source 1. For multi-phase systems, this output may have several instances in order to display the voltages between phases A-B, B-C, C-A or the average line-to-line voltage of all phases.
Valid Range
The valid range is 0 to 65,534 VAC.

Default Value
The default value is 0xFFFF (65,535 VAC), indicating the line-to-line voltage is unknown.

When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.

Source 2 Line-to-Line Voltage Output

This output network variable will report the line-to-line voltage(s) of Source 2. For multi-phase systems, this output may have several instances in order to display the voltages between phases A-B, B-C, C-A or the average line-to-line voltage of all phases.

Valid Range
The valid range is 0 to 65,534 VAC.

Default Value
The default value is 0xFFFF (65,535 VAC), indicating the line-to-line voltage is unknown.

When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.
Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.

Source 1 Line-to-Neutral Voltage Output

network output SNVT_volt_ac nvoSrc1VoltageLN;

This output network variable will report the line-to-neutral voltage(s) of Source 1. For multi-phase systems, this output may have several instances in order to display the individual line voltages A, B, C, or the average line-to-neutral voltage of all phases.

Valid Range
The valid range is 0 to 65,534 VAC.

Default Value
The default value is 0xFFFF (65,535 VAC), indicating the line-to-line voltage is unknown.

When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.

Source 2 Line-to-Neutral Voltage Output

network output SNVT_volt_ac nvoSrc2VoltageLN;

This output network variable will report the line-to-neutral voltage(s) of Source 2. For multi-phase systems, this output may have several
instances in order to display the individual line voltages A, B, C, or the average line-to-neutral voltage of all phases.

Valid Range
The valid range is 0 to 65,534 VAC.

Default Value
The default value is 0xFFFF (65,535 VAC), indicating the line-to-line voltage is unknown.

When Transmitted
The output variable is transmitted:
- Upon node reset, after obtaining valid data.
- Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.

Load Current Output

```
network output SNVT_amp_ac nvoLoadCurrent;
```

This output network variable will report the line current(s) of the electrical load. For multi-phase systems, this output may have several instances in order to display the line current of phases A, B, C, total or average current of all phases. Another instance of this output may also be used to display the neutral phase current of the load. This output is intended for monitoring the ATS load.

Valid Range
The valid range is 0 to 65,534 A.

Default Value
The default value is 0xFFFF (65,535 A), indicating the line current is unknown.
When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.

Load Power Factor Output

network output SNVT_pwr_fact nvoLoadPF;

This output network variable will report the power factor of the electrical load. This output is intended for monitoring the ATS load.

Valid Range
The valid range is –1.00000 to +1.00000. Values less than zero indicate a ‘leading’ power factor.

Default Value
The default value is 0x7FFF (+1.63835), indicating the power factor is unknown.

When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.
Load Real Power Output

network output SNVT_power_f nvoLoadRealPower;

This output network variable will report the real power of the electrical load. This output is intended for monitoring the ATS load.

Valid Range
The valid range is \(-1e38\) to \(+1e37\) W. Values less than zero indicate a reverse power condition.

Default Value
The default value is \(+1e38\) W, indicating the real power output is unknown.

When Transmitted
The output variable is transmitted:
· Upon node reset, after obtaining valid data.
· Regularly at the interval defined by the configuration variable nciMaxSendTime.

Update Rate
The update rate is determined by the configuration variable nciMaxSendTime.

Default Service Type
The default service type is acknowledged.
Configuration Properties

Maximum Send Time (Optional)

network input config SNVT_time_sec nciMaxSendTime;

This input configuration variable sets the maximum period of time that expires before the ATS object will automatically update the following optional network variables:

Valid Range

The valid range is 1.0 to 3600.0 sec. Values outside this range are invalid and will disable the automatic update mechanism.

Default Value

The default value is 0.0 sec (no automatic update).

SCPT Reference

SCPTmaxSendTime (49)

Location Label (Optional)

network input config SNVT_str_asc nciLocation;

This configuration property can be used to provide physical location of the node. Write access can be disable by the manufacturer.

Valid Range

Any NULL-terminated ASCII string up to 31 bytes of total length (including NULL).

Default Value

The default value is an ASCII string containing all NULLs (0x00).

SCPT Reference

SCPT_location (17)
Data Transfer

None specified.

Power-up State

There is no immediate network action on Power-up State.

Boundary and Error Conditions

None specified.

Additional Considerations

None.
Echelon, LON, LONWORKS, LONMARK, and the LONMARK logo are trademarks of Echelon Corporation registered in the United States and other countries.