LONMARK®
Functional Profile:
Hardwired Fire Alarm Shutdown

SFPTHardwiredFireAlarmShutdow
Example Usage

The hardwired **Fire Alarm Shutdown** profile is used to monitor a Hardwired Fire Alarm input which shuts down the HVAC system. The profile is part of an HVAC system in the Oil and Gas industry. A collection of five profiles controlling various system states can be combined into each piece of equipment. It is an engineering design requirement to determine which of the profiles are required in each implementation.

The other profiles options are: Gas Detection Shutdown, Safety Instrumented System, Recirculation and Full Ventilation.

It is the responsibility of the engineer and vendor to implement the correct priority and sequence of operation based upon the various input alarms. Example: if a fire alarm and gas alarm are received simultaneously, typically the fire alarm would take priority. Likewise if a fire alarm is received and acted upon, and shortly thereafter, while the fire alarm is still active, another alarm is received asking to change the state of the unit, the priority of the active fire alarm should take precedence. The sequence of operation of the alarm handling is an engineering design consideration and should be specified on a per project basis.

Figure 1 shows an example where these five profiles are used with a Node and a HVAC object in a device.
Figure 1 Example Usage of the Object

Object Details
Figure 3 Object Details
Table 1 SNVT Details

<table>
<thead>
<tr>
<th>NV # (M/O)*</th>
<th>Variable Name</th>
<th>SNVT Name</th>
<th>SNVT Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (M)</td>
<td>nviHwFireAlarm</td>
<td>SNVT_switch</td>
<td>95</td>
<td>Input variable initiate the Fire Alarm Shut Down</td>
</tr>
<tr>
<td>2 (M)</td>
<td>nvoHwFireAlarmFb</td>
<td>SNVT_Switch</td>
<td>95</td>
<td>Output variable that indicates that a Fire Alarm Shutdown has occurred</td>
</tr>
</tbody>
</table>

* M = mandatory, O = optional

Table 2 SCPT Details

<table>
<thead>
<tr>
<th>Man, Opt. *</th>
<th>SCPT Name Type or SNVT</th>
<th>SCPT Index</th>
<th>Associated NVs **</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>scptmaxSendTime cpMaxSendTime SNVT_time_sec (107)</td>
<td>49</td>
<td>nv2 (M)</td>
<td>Maximum period of time that expires before the Object will automatically update NVs (Heartbeat)</td>
</tr>
<tr>
<td>Man</td>
<td>scptmaxRcvTime cpReceiveHrtbt SNVT_time_sec (107)</td>
<td>48</td>
<td>nv1 (M)</td>
<td>Maximum period of time that expires before the NVs will use their default values (Receive Heartbeat)</td>
</tr>
<tr>
<td>Man</td>
<td>scptdefaultstate cpAlarmTriggerState SNVT_switch</td>
<td>71</td>
<td>Entire Object</td>
<td>Indicates which state of the relay is the active</td>
</tr>
<tr>
<td>Opt</td>
<td>scptlocation nciLocation SNVT_str_asc (36)</td>
<td>17</td>
<td>Entire Object</td>
<td>Used to provide physical location of the node</td>
</tr>
</tbody>
</table>

* Man = mandatory, Opt = optional

** List of NVs to which this configuration property applies.
Mandatory Network Variables

Fire Alarm Shutdown Input

```
network input sd_string("@p|1") SNVT_switch
  nviHwFireAlarm;
```

This input network variable is used to initiate a Fire alarm shut down. The input can come from a Fire Alarm system or from the main control system which is monitoring the hard wired inputs.

Valid Range

SNVT_switch

Default Value

SNVT_switch = 0.0 0

Configuration Considerations

Receive Heartbeat.

Fire Alarm Shutdown Output

```
network output sd_string("@p|2") bind_info(ackd)
  SNVT_switch  nvoHwFireAlarmFb;
```

This output network variable is used to indicate that a fire alarm shutdown has occurred. The hardware input for this event comes from a digital input and is hardwired to the fire alarm system.

Valid Range

The valid range of SNVT_switch.

Default Value

SNVT_switch = 0.0 0 which indicates that there is no alarm

Configuration Considerations

The transmission of this NV is regulated by the time specified in the nciMaxSendTime CP, unless the nciMaxSendTime CP has a value of 0.0, or
other invalid value; in which case, the NV is not regulated by the nciMaxSendTime value.

When Transmitted

The output variable is transmitted:

- Upon node reset, after obtaining valid data.
- When the ‘state’ has changed.
- Regularly at the interval defined by the configuration variable nciMaxSendTime.

Default Service Type

The default service type is acknowledged.
Configuration Properties

Send Heartbeat (Mandatory)

network input config sd_string("&2,2,0\x80,49")
SNVT_time_sec nciMaxSendTime;

This input configuration property sets the maximum period of time that can expire before the Object will automatically update the following network variables:

nv2 – nvoHwFireAlarmFb (Mandatory)

Valid Range

The valid range is 1.0 to 3600.0 seconds.

Values outside this range are invalid and will disable the automatic update mechanism. A value of zero (0) will be used for the internal timer in cases where configured values are above 3600.0 seconds.

Default Value

The default value is 30.0

Configuration Requirements/Restrictions

This CP has no modification restrictions (no_restrictions). It can be modified at any time.

SCPT Reference

SCPTmaxSendTime (49)

Receive Heartbeat (Mandatory)

network input config sd_string("&2,1,0\x80,48")
SNVT_time_sec nciMaxRcvTime;

This configuration property is used to control the maximum time that elapses after the last update to a bound network input.

nv1 – nviHwFireAlarm
Valid Range
The valid range is 1.0 to 3600.0 seconds.

Default Value
The default value is 30.0
Setting SCPTmaxRcvTime to zero disables the receive failure detect mechanism.

Configuration Requirements/Restrictions
This CP has no modification restrictions (no_restrictions). It can be modified at any time.

SCPT Reference
SCPTmaxRcvTime (48)

Alarm Trigger state (Mandatory)

network input config sd_string("&2,p,0\x80,71")
SNVT_switch cpAlarmTriggerState;
This input configuration indicates the default state of the input signal. With this configuration property you could set if the alarm signal will be detected while ACTIVE HIGH or ACTIVE LOW.

Valid Range
SNVT_switch

Default Value
The default value is 100.0 1 (Active High)

Configuration Requirements/Restrictions
This CP has no modification restrictions

SCPT Reference
SCPTdefltBehave (71)
Location Label (Optional)

network input config sd_string("&1, p, 0\x80, 17")
SNVT_str_asc nciLocation;

This configuration property can be used to provide the location of the Object/node, where p is the Object index. The above code declaration is for providing the location of the Object. If it is preferred, the location of the node can be represented with the following code declaration:

network input config sd_string("&0, , 0\x80, 17")
SNVT_str_asc nciLocation;

Valid Range

Any NULL-terminated ASCII string up to 31 bytes of total length (including NULL). The string must be truncated if the length does not allow the 31st character to be the NULL (0x00).

Default Value

The default value is an ASCII string containing 31 NULLs (0x00).

Configuration Requirements/Restrictions

This CP has no modification restrictions (no_restrictions). It can be modified at any time.

SCPT Reference

SCPTlocation (17)
Key for Unresolved References

\(i, j, k\) are the indices of the CP-associated NVs in relation to their declaration order within the node, when implemented.

\(p\) is this Object’s index relative to the node sd_string declaration, when implemented.

Data Transfer

None specified.

(This section allows for a description of any required method of exchanging data with another node, or repository. For example, if this Functional Profile definition was for a data collection device, this section may define how the collected data should be transferred to a recording device.)

Power-up State

There is no immediate network action on Power-up State.

(This section allows for defining such things as the safety value for hardware (like the positions of dampers), or the initial values of network outputs, or a default operating state while initializing the start-up conditions in the device.)

Boundary and Error Conditions

None specified.

(This section allows for the specification of how to handle values that are out of range, if more restrictive than that defined by the SNVT or SCPT definitions. It also allows for the specification of how to handle errors with the device.)

Additional Considerations

None specified.

(This section can be used to specify any other important factors that would require being made common among all devices implementing this Functional Profile. These include, but are not limited to: industry safety specifications; operation with multiple instances of this Object in one device; and intentions of operation with other Objects.)
LonMark, the LonMark logo, LonMark International, and the LonMark International logo are trademarks of LonMark International.