LONMARK®
Functional Profile:
Space Comfort Control Command Module
Overview

This document describes the profile for the Space Comfort Control Command Module object. This will also be referred to as the Command Module in the profile. A Command Module is a type of HVAC control device that provides the means for the occupant to view certain information that relates to his/her comfort and the means to provide certain input to alter the present operating conditions. A Command Module Device is a device that is connected to the communication bus and may or may not have sensors directly connected to it. Traditionally, the purpose of a Command Module Device is to provide the occupant input to modify the operating conditions of an HVAC equipment that provides the conditioned air to the zone. The Command Module Device can also control multiple identical HVAC equipment.
Example Usage

The Command Module Device resides on a LONWORKS network interacting with one or more of the following LONMARK nodes:

- space temperature sensor (can also be hard wired to the device itself)
- space relative humidity sensor
- space CO2 sensor (can also be hard wired to the device itself)
- occupancy sensor (can also be hard wired to the device itself)
- controller (occupancy mode, heat/cool changeover, supply energy control, etc.)
- installation/service tool
Space Comfort Control Command Module Functional Profile Details

The following tables summarize the Network Variable Inputs, Network Variable Outputs and Configuration Properties for the Space Comfort Control Command Module Object. This object is intended for use in a one-to-one relationship with a controller type object (e.g. VAV, FCU type profiles).

Table 1-1: Network Variable Inputs

<table>
<thead>
<tr>
<th>NV # (M/O)**</th>
<th>Name</th>
<th>Rcv HrtBt</th>
<th>SNVT Type (SNVT Index)</th>
<th>SNVT Index</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (O)</td>
<td>nviSpaceTemp</td>
<td>Yes</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>RAM</td>
<td>Space Temperature Input (overrides local sensor)</td>
</tr>
<tr>
<td>2 (O)</td>
<td>nviUserLockout</td>
<td>No</td>
<td>SNVT_switch</td>
<td>95</td>
<td>RAM</td>
<td>Used to lock out the Command module user control of any setpoints, application (heat/cool) mode or fan speed commands. State =1 and Value != 0 means that the Command Module is Locked Out.</td>
</tr>
<tr>
<td>3 (O)</td>
<td>nviTime</td>
<td>Yes</td>
<td>SNVT_time_stamp</td>
<td>84</td>
<td>RAM</td>
<td>Year, month, day, hour, minute, second.</td>
</tr>
<tr>
<td>4 (O)</td>
<td>nviEffectSetpt</td>
<td>Yes</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>RAM</td>
<td>Effective Setpoint. Input from a controller object and used for display.</td>
</tr>
<tr>
<td>5 (O)</td>
<td>nviEffectOccupy</td>
<td>No</td>
<td>SNVT_occupancy</td>
<td>109</td>
<td>RAM</td>
<td>Effective Occupancy. Input from a controller object and used for display.</td>
</tr>
<tr>
<td>6 (O)</td>
<td>nviUnitStatus</td>
<td>Yes</td>
<td>SNVT_hvac_status</td>
<td>112</td>
<td>RAM</td>
<td>Unit operating status. Input from a controller object and used for display.</td>
</tr>
<tr>
<td>7 (O)</td>
<td>nviOutdoorTemp</td>
<td>Yes</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>RAM</td>
<td>Outside air temperature - used for display only.</td>
</tr>
<tr>
<td>8 (O)</td>
<td>nviOutdoorRH</td>
<td>Yes</td>
<td>SNVT_lev_percent</td>
<td>81</td>
<td>RAM</td>
<td>Outside air relative humidity - used for display only.</td>
</tr>
<tr>
<td>9 (O)</td>
<td>nviSpaceRH</td>
<td>Yes</td>
<td>SNVT_lev_percent</td>
<td>81</td>
<td>RAM</td>
<td>Space relative humidity (overrides local sensor)</td>
</tr>
<tr>
<td>10 (O)</td>
<td>nviSpaceCO2</td>
<td>Yes</td>
<td>SNVT_ppm</td>
<td>29</td>
<td>RAM</td>
<td>Space CO2 (overrides local sensor)</td>
</tr>
<tr>
<td>11 (O)</td>
<td>nviEnergyHoldOff</td>
<td>Yes</td>
<td>SNVT_switch</td>
<td>95</td>
<td>RAM</td>
<td>Energy Hold Off Input</td>
</tr>
</tbody>
</table>

** M = mandatory, O = optional
Table 1-2: Network Variable Outputs

<table>
<thead>
<tr>
<th>NV # (M/O)**</th>
<th>Name</th>
<th>Send HrtBt</th>
<th>SNVT Type (SNVT Index)</th>
<th>SNVT Index</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (M)</td>
<td>nvoSetpoint</td>
<td>No</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>RAM</td>
<td>Temperature Setpoint output (absolute) (L)</td>
</tr>
<tr>
<td>13 (M)</td>
<td>nvoSpaceTemp</td>
<td>Yes</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>RAM</td>
<td>Measured Space Temperature Output</td>
</tr>
<tr>
<td>14 (O)</td>
<td>nvoHeatCool</td>
<td>Yes</td>
<td>SNVT_hvac_mode</td>
<td>108</td>
<td>RAM</td>
<td>User Commanded Heat/Cool Application mode Output. (L)</td>
</tr>
<tr>
<td>15 (O)</td>
<td>nvoFanSpeed</td>
<td>No</td>
<td>SNVT_switch</td>
<td>95</td>
<td>RAM</td>
<td>User Commanded Fan Speed Output (L)</td>
</tr>
<tr>
<td>16 (O)</td>
<td>nvoOccSensor</td>
<td>Yes</td>
<td>SNVT_occupancy</td>
<td>109</td>
<td>RAM</td>
<td>Measured Occupancy Sensor Output</td>
</tr>
<tr>
<td>17 (O)</td>
<td>nvoSpaceRH</td>
<td>Yes</td>
<td>SNVT_lev_percent</td>
<td>81</td>
<td>RAM</td>
<td>Measured Space Humidity Output</td>
</tr>
<tr>
<td>18 (O)</td>
<td>nvoSpaceCO2</td>
<td>Yes</td>
<td>SNVT_ppm</td>
<td>29</td>
<td>RAM</td>
<td>Measured Space CO2 Sensor Output</td>
</tr>
<tr>
<td>19 (O)</td>
<td>nvoOccManCmd</td>
<td>No</td>
<td>SNVT_occupancy</td>
<td>109</td>
<td>RAM</td>
<td>User Commanded Occupancy Output</td>
</tr>
<tr>
<td>20 (O)</td>
<td>nvoSetptOffset</td>
<td>Yes</td>
<td>SNVT_temp_p</td>
<td>105</td>
<td>RAM</td>
<td>User Commanded Setpoint Offset Output (L)</td>
</tr>
<tr>
<td>21 (O)</td>
<td>nvoSetpoints</td>
<td>No</td>
<td>SNVT_temp_setpt</td>
<td>106</td>
<td>RAM</td>
<td>User Commanded Temperature setpoint Output (L)</td>
</tr>
<tr>
<td>22 (O)</td>
<td>nvoSpaceCO2Lim</td>
<td>No</td>
<td>SNVT_ppm</td>
<td>29</td>
<td>NVM</td>
<td>User Commanded Space CO2 setpoint (L)</td>
</tr>
<tr>
<td>23 (O)</td>
<td>nvoSpaceRHSetpt</td>
<td>No</td>
<td>SNVT_lev_percent</td>
<td>81</td>
<td>NVM</td>
<td>User Commanded Space RH setpoint (L)</td>
</tr>
</tbody>
</table>

** M = mandatory, O = optional L= Locked out by a supervisory input through nviUserLockout
Table 1-3: Configuration Properties

<table>
<thead>
<tr>
<th>Config. Property #</th>
<th>Name</th>
<th>SCPT Index</th>
<th>SNVT Type (SNVT Index)</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M/O)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (M)</td>
<td>nciSndHrtBt</td>
<td>49</td>
<td>SNVT_time_sec</td>
<td>NVM</td>
<td>Send Heartbeat</td>
</tr>
<tr>
<td>2 (M)</td>
<td>nciTmpOffset</td>
<td>70</td>
<td>SNVT_temp_p</td>
<td>NVM</td>
<td>Sensor field calibration. Same as Temperature sensor profile.</td>
</tr>
<tr>
<td>3 (M)</td>
<td>nciTmpMinDelta</td>
<td>64</td>
<td>SNVT_temp_p</td>
<td>NVM</td>
<td>Temperature Send on delta value. Same as Temperature sensor profile.</td>
</tr>
<tr>
<td>4 (O)</td>
<td>nciMinOutTm</td>
<td>52</td>
<td>SNVT_time_sec</td>
<td>NVM</td>
<td>Minimum Send Time. Same as Temperature sensor profile.</td>
</tr>
<tr>
<td>5 (O)</td>
<td>nciSetpoints</td>
<td>60</td>
<td>SNVT_temp_setpt</td>
<td>NVM</td>
<td>Occupancy Setpoints of the related Controller</td>
</tr>
<tr>
<td>6 (O)</td>
<td>nciRcvHrtBt</td>
<td>48</td>
<td>SNVT_time_sec</td>
<td>NVM</td>
<td>Receive Heartbeat</td>
</tr>
<tr>
<td>7 (O)</td>
<td>nciLocation</td>
<td>17</td>
<td>SNVT_str_asc</td>
<td>NVM</td>
<td>Location Label</td>
</tr>
<tr>
<td>8 (O)</td>
<td>nciCO2Offset</td>
<td>68</td>
<td>SNVT_ppm</td>
<td>NVM</td>
<td>CO2 Sensor field calibration</td>
</tr>
<tr>
<td>9 (O)</td>
<td>nciCO2MinDelta</td>
<td>63</td>
<td>SNVT_ppm</td>
<td>NVM</td>
<td>CO2 Send on delta value</td>
</tr>
<tr>
<td>10 (O)</td>
<td>nciRHOffset</td>
<td>69</td>
<td>SNVT_lev_percent</td>
<td>NVM</td>
<td>RH Sensor field calibration</td>
</tr>
<tr>
<td>11 (O)</td>
<td>nciRHMinDelta</td>
<td>62</td>
<td>SNVT_lev_percent</td>
<td>NVM</td>
<td>RH Send on delta value</td>
</tr>
</tbody>
</table>

** M = mandatory, O = optional
Mandatory Network Variables

Temperature Setpoint Output

```plaintext
network output SNVT_temp_p nvoSetpoint;
```

This output network variable is used to allow the occupant to change the temperature setpoint for the occupied and standby mode from the Command Module Device (Note: The unoccupied setpoints are not changed.). The individual heat/cool setpoints for occupied and standby mode are then derived from nviSetpoint.

There are two methods that can be used by the controller to derive the actual setpoints from nviSetpoint and nciSetpoints. Method 1 is referred to as the “symmetrical method”, since the effective heat/cool setpoints are always symmetrical relative to nviSetpoint, regardless of the values defined in nciSetpoints. Method 2 is referred to as the “asymmetrical method”, since the effective heat/cool setpoints are not always symmetrical relative to nviSetpoint, based on the values defined in nciSetpoints. Either method can be used in the controller, as defined by the manufacturer.

Method #1: (also known as the symmetrical method)

The effective heat/cool setpoints for the occupied and standby modes are derived from nviSetpoint plus/minus half the occupied and standby deadbands calculated from nciSetpoints:

- `deadband_occupied = occupied_cool - occupied_heat`
- `deadband_standby = standby_cool - standby_heat`

- `effective_occupied_cool = nviSetpoint + 0.5 (deadband_occupied)`
- `effective_occupied_heat = nviSetpoint - 0.5 (deadband_occupied)`
- `effective_standby_cool = nviSetpoint + 0.5 (deadband_standby)`
- `effective_standby_heat = nviSetpoint - 0.5 (deadband_standby)`

Method #2: (also known as the asymmetrical method)

The effective heat/cool setpoints for the occupied and standby modes are derived from nciSetpoints plus the absolute setpoint offset, calculated as the difference between nviSetpoint and the mean of the occupied_heat and occupied_cool setpoints defined in nciSetpoints:

- `abs_setpoint_offset = nviSetpoint - (occupied_cool + occupied_heat)/2`
- `effective_occupied_cool = occupied_cool + abs_setpoint_offset`
- `effective_occupied_heat = occupied_heat + abs_setpoint_offset`
- `effective_standby_cool = standby_cool + abs_setpoint_offset`
- `effective_standby_heat = standby_heat + abs_setpoint_offset`
Valid Range
The valid range is 10°C to 35°C.

When Transmitted
The variable is transmitted immediately when its value has changed significantly.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Space Temperature Output

`network output SNVT_temp_p nvoSpaceTemp;`

This output network variable is used to transmit the space temperature that is hard wired to the Command Module Device. If the input nviSpaceTemp has a valid value, this output will echo the value of the input. If a valid value for nviSpaceTemp does not exist, the locally wired sensor value is used. If neither value is available, the output will send the invalid value.

Valid Range
The valid range is -10°C to 50°C. The value 0x7FFF=+327.67°C will be used as an invalid value in case of a sensor failure.

When Transmitted
The variable is transmitted immediately when its value has changed significantly (nciTmpMinDelta). Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

Update Rate
This value will be updated no faster than the Minimum Send Time (nciMinOutTm) configuration value, if used (manufacturer-defined).

Default Service Type
The default service type is unacknowledged.

Optional Network Variables

Space Temperature Input

`network input SNVT_temp_p nviSpaceTemp;`

This input network variable is used to display the value of an external space temperature sensor. The unit can also have a locally wired space temperature sensor. In any case, the nviSpaceTemp has priority if a valid value is present.
Valid Range
The valid range is -10°C to 50°C. The value 0x7FFF=+327.67°C will be handled as an invalid value.

Default Value
Default Value is 0x7FFF (=+327.67°C). This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

User Lockout Input

network input SNVT_switch nviUserLockout;

This input network variable is used by the supervisory device to restrict the occupant from making certain changes. The occupant will not be able to change setpoints, application mode (heat/cool), or fan speed. These restrictions are due to the operation of critical high level programs such as Electrical Demand, Chiller Reset, etc. which the occupant should not override. The specific variables that are Locked Out are indicated in the table 1-2.

Valid Range
The valid range is explained in the following table:

<table>
<thead>
<tr>
<th>State</th>
<th>Value</th>
<th>Equivalent Percent</th>
<th>Requested Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>Unlocked</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>Unlocked</td>
</tr>
<tr>
<td>1</td>
<td>1 to 255</td>
<td>0.5 to 100.0%</td>
<td>Locked</td>
</tr>
<tr>
<td>0xFF</td>
<td>n/a</td>
<td>n/a</td>
<td>Unlocked</td>
</tr>
</tbody>
</table>

Default Value
Default value is Unlocked (state = 0xFF).

Time Input

network input SNVT_time_stamp nviTime;

This input network variable is used to display the local time in the Command Module Device (year, month, day, hour, minute, second).

Valid Range
The valid range is per SNVT definition.

Default Value
Default Value is 0 in every field. This value will be adopted at power-up. In case of a bound input not receiving an update within the specified receive heartbeat time the behavior is manufacturer defined.
Effective Temperature Setpoint Input

network input SNVT_temp_p nviEffectSetpt;

This input network variable is from a controller object and is used to display in the Command Module Device the controller’s Effective Setpoint. The controller’s effective temperature setpoint may depend on the controller object’s nciSetpoints, nvoEffectOccupy, nviSetpoint, nviSetpointOffset, nviHeatCool, and any local setpoint adjustment. For example, if the occupancy state is unoccupied and the heat/cool state is heat, then the effective setpoint would be equal to the unoccupied heating setpoint defined in nciSetpoints.

Valid Range
The valid range is 10°C to 35°C.

Default Value
Default Value is 0x7FFF (= +327.67°C). This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

Effective Occupancy Input

network input SNVT_occupancy nviEffectOccup;

This input network variable is used to indicate the associated controller object’s actual occupancy mode. This information is to be displayed in the Command Module Device.

Valid Range
The valid range is OC_OCCUPIED, OC_UNOCCUPIED, OC_BYPASS, OC_STANDBY

Default Value
Default Value is OC_NUL. This value will be adopted at power-up.

Unit Status Input

network input SNVT_hvac_status nviUnitStatus;

This input network variable is transmitted from the Controller object to inform the occupant of the status of the associated HVAC equipment, to be displayed in the Command Module Device. It has the operating mode, the capacity of heating and cooling used, fan status and an indication if any alarms are present in the object.

Valid Range
mode: HVAC_HEAT, HVAC_COOL, HVAC_OFF, HVAC_FAN_ONLY, HVAC_NUL (INVALID)
other enumerations are optional
heat_output_primary: 0-100%, 0xFFFF (INVALID)
heat_output_secondary: 0-100%, 0xFFFF (INVALID)
cool_output: 0-100%, 0xFFFF (INVALID)
fan_output: 0-100%, 0xFFFF (INVALID)
in_alarm: 0 Means there is no alarm
Not 0 Means there is an alarm. 0xFF means alarm notification disabled (INVALID).
A filter alarm will also be indicated using this field.

Default Value
The default value is INVALID for all the fields. This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

Outdoor Air Temperature Input
network input SNVT_temp_p nviOutdoorTemp;
This input network variable represents information from an outdoor air temperature sensor. This value is typically generated from either a communicating sensor or a supervisory controller.

Valid Range
The valid range is -40°C to 60°C. The value 0x7FFF = +327.67°C will be handled as an invalid value in case of a sensor failure.

Default Value
Default Value is 0x7FFF (= +327.67°C). This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

Outdoor Air Humidity Input
network input SNVT_lev_percent nviOutdoorRH;
This input network variable is used to display outdoor humidity in percent. This input is typically sent from either a supervisory controller or a communicating humidity sensor.

Valid Range
The valid range is 0 to 100 %. The value 0x7FFF = +163.835 % will be handled as an invalid value in case of a sensor failure.

Default Value
Default Value is 0x7FFF. This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

Space Humidity Input
network input SNVT_lev_percent nviSpaceRH;
This input network variable is used to display space humidity in percent. This input is typically sent from a communicating humidity sensor or from a sensor that is connected to the controller. The unit can also have a locally wired relative humidity sensor. Valid values of nviSpaceRH have priority over local sensor values.
Valid Range
The valid range is 0 to 100 %. The value 0x7FFF = +163.835 % will be handled as an invalid value in case of a sensor failure.

Default Value
Default Value is 0x7FFF. This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

Space CO2 Sensor Input

network input SNVT_ppm nviSpaceCO2;
This input network variable is used to display the space CO2 levels in PPM. The unit can also have a locally wired CO2 sensor. Valid values of nviSpaceCO2 have priority over local sensor values.

Valid Range
The valid range is 0 to 5000 PPM. The value 0xFFFF = 65,535 will be handled as an invalid value in case of a sensor failure.

Default Value
Default Value is 0xFFFF. This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.

Energy Hold Off Input

network input SNVT_switch nviEnergyHoldOff;
This input is from a space comfort controller device which monitors inputs such as a window contact sensor. This input is used to display the EnergyHoldOff status of the controller.

Valid Range

<table>
<thead>
<tr>
<th>State</th>
<th>Value</th>
<th>Energy Hold Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n/a</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>1-255</td>
<td>Energy Hold Off</td>
</tr>
<tr>
<td>0xFF</td>
<td>n/a</td>
<td>Normal (Invalid)</td>
</tr>
</tbody>
</table>

Default Value
Default Value is Normal (State = 0xFF). This value will be adopted at power-up and in case of a bound input not receiving an update within the specified receive heartbeat time.
Optional Network Variables

Heat/Cool Output

network output SNVT_hvac_mode nvoHeatCool

This output network variable from the Command Module Device is used to transmit the user’s command to the controller of the HVAC equipment.

When this network variable indicates COOL, the HVAC equipment controller will be allowed to cool if required to maintain space conditions, but cannot heat. When this network variable indicates HEAT, the HVAC equipment controller will be allowed to heat if required to maintain space conditions, but cannot cool. When the network variable indicates HVAC_FAN_ONLY the HVAC equipment will allow only the fan to operate and no heating or cooling will take place. HVAC_EMERG_HEAT is used to start emergency heat.

Valid Range

0 = HVAC_AUTO (Mode determined by the controller)
1 = HVAC_HEAT (Use heat setpoints)
3 = HVAC_COOL (Use cool setpoints)
6 = HVAC_OFF
8 = HVAC_EMERG_HEAT
9 = HVAC_FAN_ONLY (Disables heating and cooling while the fan is running)

All other enumeration are optional.

When Transmitted

This variable is transmitted immediately when its value has changed significantly. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

Update Rate

There is no maximum update rate.

Default Service Type

The default service type is unacknowledged.

Fan Speed Output

network output SNVT_switch nvoFanSpeed;

This output network variable reflects the requested speed of a remote fan.

Valid Range

The valid range is described below:
state = 0 or 1 (OFF or ON)
value = as defined below [n>= m]:

<table>
<thead>
<tr>
<th>state</th>
<th>value</th>
<th>fan speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (OFF)</td>
<td>0 %</td>
<td>OFF</td>
</tr>
<tr>
<td>1 (ON)</td>
<td>(1/n)</td>
<td>fan speed #1</td>
</tr>
<tr>
<td>1 (ON)</td>
<td>(2/n)</td>
<td>fan speed #2</td>
</tr>
<tr>
<td>1 (ON)</td>
<td>(m/n)</td>
<td>fan speed #m</td>
</tr>
<tr>
<td>1 (ON)</td>
<td>100%</td>
<td>fan speed #n</td>
</tr>
</tbody>
</table>

NOTE: Truncation should be used when computing the above values.

When Transmitted
The variable is transmitted immediately when its value has changed.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Occupancy Sensor Output

network output SNVT_occupancy nvoOccSensor;

The Command Module Device object conveys to the network the occupancy state of a hard wired occupancy sensor.

Valid Range
The valid range is described in the table below:

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC_OCCUPIED</td>
<td>The Command Module Device reports occupancy mode.</td>
</tr>
<tr>
<td>OC_UNOCCUPIED</td>
<td>The Command Module Device reports unoccupied mode.</td>
</tr>
<tr>
<td>OC_NUL</td>
<td>This is the initial value after power-up.</td>
</tr>
</tbody>
</table>

When Transmitted
Whenever the state changes significantly. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

Update Rate
This value will be updated no faster than the Minimum Send Time (nciMinOutTm) configuration value, if used (manufacturer-defined).

Default Service Type
The default service type is unacknowledged.
Space Humidity Output

network output SNVT_lev_percent nvoSpaceRH;

This output network variable is used to transmit the space relative humidity that is hard wired to the Command Module Device. If the input nviSpaceRH has a valid value, this output will echo the value of the input. If a valid value for nviSpaceRH does not exist, the locally wired sensor value is used. If neither value is available, the output will send the invalid value.

Valid Range

The valid range is 0 % to 100 %. The value 0x7FFF = +163.835 % will be sent as an invalid value to indicate that the locally wired humidity sensor is failed.

When Transmitted

This variable is transmitted immediately when its value has changed significantly (nciRHMinDelta). Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

Update Rate

This value will be updated no faster than the Minimum Send Time (nciMinOutTm) configuration value, if used (manufacturer-defined).

Default Service Type

The default service type is unacknowledged.

Space CO₂ Sensor Output

network output SNVT_ppm nvoSpaceCO2;

This output network variable is used to transmit the space CO2 sensor value that is hard wired to the Command Module Device. If the input nviSpaceCO2 has a valid value, this output will echo the value of the input. If a valid value for nviSpaceCO2 does not exist, the locally wired sensor value is used. If neither value is available, the output will send the invalid value.

This output network variable indicates the space CO2 concentration in PPM.

Valid Range

The valid range is 0 to 5000 PPM. The value 0x7FFF = 65,535 is reserved to indicate an invalid value, such as a failed sensor.

When Transmitted

This variable is transmitted immediately when its value has changed significantly (nciCO2MinDelta). Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.
Update Rate
This value will be updated no faster than the Minimum Send Time (nciMinOutTm) configuration value, if used (manufacturer-defined).

Default Service Type
The default service type is unacknowledged.

Occupancy Manual Command Output

network output SNVT_occupancy nvoOccManCmd;

The Command Module Device object conveys to the network the occupancy state as it is modified by the occupant.

Valid Range
The valid range is OC_OCCUPIED, OC_UNOCCUPIED, OC_BYPASS, OC_STANDBY,

OC_NUL: This is the initial value after power-up and it remains until another manual value is received. It is also used to terminate a command.

When Transmitted
Whenever the state changes significantly.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Temperature Setpoint Offset Output

network output SNVT_temp_p nvoSetptOffset;

This output network variable is used to shift the temperature setpoint via the network, by adding nviSetPtOffset to the current setpoint. It is typically bound to a controller unit object. This setpoint shifting operates only on occupied and standby setpoints and does not affect the unoccupied setpoint.

Valid Range
The valid Range is -10°C to +10°C. Default Value is 0°C.

When Transmitted
This variable is transmitted immediately when its value has changed significantly. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.
Update Rate
There is no maximum update rate.

Default Service Type
The default service type is unacknowledged.

Occupancy Temperature Setpoints Output

```cpp
network output SNVT_temp_setpt nvoSetpoints;
```

This output defines the occupancy temperature setpoints for heat and cool mode. The setpoint will have an assigned upper and lower limit for each state defined below within the min. and max. range. This is used for synchronization of the setpoints in the command module with the setpoints in the controller.

Valid Range

<table>
<thead>
<tr>
<th>State</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>occupied_cool</td>
<td>10 °C</td>
<td>35 °C</td>
<td>23 °C</td>
</tr>
<tr>
<td>standby_cool</td>
<td>10 °C</td>
<td>35 °C</td>
<td>25 °C</td>
</tr>
<tr>
<td>unoccupied_cool</td>
<td>10 °C</td>
<td>35 °C</td>
<td>28 °C</td>
</tr>
<tr>
<td>occupied_heat</td>
<td>10 °C</td>
<td>35 °C</td>
<td>21 °C</td>
</tr>
<tr>
<td>standby_heat</td>
<td>10 °C</td>
<td>35 °C</td>
<td>19 °C</td>
</tr>
<tr>
<td>unoccupied_heat</td>
<td>10 °C</td>
<td>35 °C</td>
<td>16 °C</td>
</tr>
</tbody>
</table>

When Transmitted

This variable is transmitted immediately when its value has changed significantly.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Space CO2 Limit Output

```cpp
network output eeprom SNVT_ppm  nvoSpaceCO2Lim;
```

This network output property defines a high limit CO2 setpoint as requested by the occupant for ventilation functions. The value is transmitted to the controller via the network.

Valid Range

100 to 3000 PPM. The value 0x7FFF = 65,535 is reserved to indicate an invalid value.

Default Value
Invalid value.
When transmitted
This variable is transmitted immediately when its value has changed significantly.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Space Humidity Setpoint Output

```
network output eeprom SNVT_lev_percent nvoSpaceRHSetpt;
```

This network output property defines the high limit humidity setpoint for the controlled space. The value is transmitted to the controller via the network.

Valid Range
30 to 60%. A value of 0x7FFF = 163.835 % will disable the dehumidification functions in the controller.

0x7FFF is invalid value.

Default Value
Invalid value.

When transmitted
This variable is transmitted immediately when its value has changed significantly.

Update Rate
There is no maximum update rate.

Default Service Type
The default service type is acknowledged.

Mandatory Configuration Properties

Send Heartbeat

```
network input config SNVT_time_sec nciSndHrtBt;
```

This configuration property defines the maximum period of time that expires before the specified network variable outputs will automatically be updated. The specific method for sending heartbeat updates is manufacturer-defined.

Network variable outputs can be defined in 2 categories for the use of send heartbeat, based upon whether they are specified for send heartbeat in Table 2.2, as shown below:

<table>
<thead>
<tr>
<th>Network Variable</th>
<th>Specified for Send Heartbeat</th>
<th>Result: Use Send</th>
</tr>
</thead>
</table>

The following output variables use the send Heartbeat.

<table>
<thead>
<tr>
<th>Output</th>
<th>in Table 2.2?</th>
<th>Heartbeat?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Category 2</td>
<td>No</td>
<td>Manufacturer-defined</td>
</tr>
</tbody>
</table>

nvoSpaceTemp nvoOcssSensor nvoSpaceRH
nvoSpaceCO2 nvoSetptOffset nvoHeatCool

Valid Range
The valid range is any value between 0.0 sec and 6,553.4 sec. Setting nciSndHrtBt = 0 disables the automatic update mechanism.

Default Value
0 (no automatic update)

SCPT Reference
SCPTmaxSendTime (49)

Temperature Offset

network input config SNVT_temp_p nciTmpOffset;

This configuration property is used to calibrate the internal temperature sensor. This offset applies after the use of any translation table or gain factor.

Valid Range
The valid range is -10 °C to +10°C.

Default Value
The default value is manufacturer specific.

SCPT Reference
SCPToffsetTemp(70)

Temperature Send on Delta

network input config SNVT_temp_p nciTmpMinDelta;

Indicates the minimum temperature change required to update the output network variables.

Valid Range
The valid range is -10 °C to +10°C.

Default Value
The default value is manufacturer specific.

SCPT Reference
SCPTminDeltaTemp(64)
Optional Configuration Properties

Minimum Send Time

network input config SNVT_time_sec nciMinOutTm;
This configuration property defines the minimum period of time between automatic network variable output transmissions. The specific use of nciMinOutTm is manufacturer-defined. For example, it can be applied to some network variable outputs (such as sensor values) but not to all network variable outputs.
Although this configuration property is optional, it must be provided if the minimum send time function is used in the controller. If this configuration property is not present, the controller cannot use the minimum send time function.
The following Output Variables are controlled by this configuration property.
 nvoSpaceTemp nvoOccSensor nvoSpaceRH
 nvoSpaceCO2

Valid Range
The valid range is any value between 0.0 sec and 6,553.4 sec.

Default Value
0

SCPT Reference
SCPTminSendTime (52)

Occupancy Temperature Setpoints

network input config SNVT_temp_setpt nciSetPnts;
This configuration property defines the space temperature setpoints for the various heat, cool and occupancy modes. The occupied and standby setpoints are defaults which can be modified by various input variables, such as nviSetpoint and nviSetpointOffset. The unoccupied setpoints are always valid.
The values of the individual setpoints within nciSetpoints must be kept in ascending order as follows: unoccupied_heat ≤ standby_heat ≤ occupied_heat ≤ occupied_cool ≤ standby_cool ≤ unoccupied_cool.
Valid Range and Default Value

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>occupied_cool</td>
<td>10 °C</td>
<td>35 °C</td>
<td>23 °C</td>
</tr>
<tr>
<td>standby_cool</td>
<td>10 °C</td>
<td>35 °C</td>
<td>25 °C</td>
</tr>
<tr>
<td>unoccupied_cool</td>
<td>10 °C</td>
<td>35 °C</td>
<td>28 °C</td>
</tr>
<tr>
<td>occupied_heat</td>
<td>10 °C</td>
<td>35 °C</td>
<td>21 °C</td>
</tr>
<tr>
<td>standby_heat</td>
<td>10 °C</td>
<td>35 °C</td>
<td>19 °C</td>
</tr>
<tr>
<td>unoccupied_heat</td>
<td>10 °C</td>
<td>35 °C</td>
<td>16 °C</td>
</tr>
</tbody>
</table>

SCPT Reference

SCPTsetPtns(60)

Receive Heartbeat

network input config SNVT_time_sec nciRcvHrtBt;

This configuration property is used to control the maximum time that elapses after the last update to an input network variable before the Command Module Device starts to use its default values. Network variable inputs can be defined in 3 categories for use of receive heartbeat, based upon whether they are specified for receive heartbeat and whether they are bound, as shown below:
<table>
<thead>
<tr>
<th>Network Variable Input</th>
<th>Specified for Receive Heartbeat in Table 2.1?</th>
<th>Bound?</th>
<th>Result: Use Receive Heartbeat?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Category 2</td>
<td>Yes</td>
<td>No</td>
<td>Manufacturer-defined</td>
</tr>
<tr>
<td>Category 3</td>
<td>No</td>
<td>Don’t Care</td>
<td>No</td>
</tr>
</tbody>
</table>

The following input network variables are controlled by this configuration property:

- nviSpaceTemp
- nviTime
- nviEffectTmpSetpt
- nviEnergyHoldOff
- nviUnitStatus
- nviOutdoorTemp
- nviOutdoorRH
- nviSpaceRH
- nviSpaceCO2

Valid Range

The valid range is any value between 0.0 sec and 6,553.4 sec. Setting nciRcvHrtBt = 0 disables the Receive Heartbeat mechanism.

Default Value

0 (no failure detect)

SCPT Reference

SCPTmaxRcvTime (48)

Location Label

network input config SNVT_str_asc nciLocation;

This configuration property can optionally be used to provide more descriptive physical location information than can be provided by the Neuron Chip’s 6 byte location string. The location relates to the object and not to the node.

Valid Range

Any NULL terminated ASCII string of 31 bytes total length.

Default Value

The default value is an ASCII string containing all zeros ("\0").

SCPT Reference

SCPT_location (17)

CO2 Offset

network input config SNVT_ppm nciCO2Offset;

This configuration property is used to calibrate the internal CO2 sensor. This offset applies after the use of any translation table or gain factor.
Valid Range

The valid range is any value within the defined limits of the SNVT_ppm.

Default Value

The default value is manufacturer specific.

SCPT Reference

SCPToffsetCO2 (68)

CO2 Send on Delta

`network input config SNVT_ppm nciCO2MinDelta;`

Indicates the minimum CO2 level change required to update the output network variables.

Valid Range

Valid range is 0-300 ppm.

Default Value

Manufacture specific.

SCPT Reference

SCPTminDeltaCO2 (66)

RH Offset

`network input config SNVT_lev_percent nciRHOffset;`

This configuration property is used to calibrate the internal RH sensor. This offset applies after the use of any translation table or gain factor.

Valid Range

The valid range is any value within the defined limits of the SNVT_lev_percent.

Default Value

The default value is manufacturer specific.

SCPT Reference

SCPToffsetRH(69)

RH Send on Delta

`network input config SNVT_lev_percent nciRHMinDelta;`

Indicates the minimum relative humidity change required to update the output network variables.
Valid Range
Valid range is 0-10%.

Default Value
Manufacture specific.

SCPT Reference
SCPTminDeltaRH (62)

Data Transfer
None specified.

Power-up State
None specified.

Boundary and Error Conditions
None specified.