
LONMARK® Resource File API
Reference Guide

Revision 5
May 2013

 078-0261-01C

ii LONMARK Resource File API Reference Guide

Echelon, LON, LONWORKS, Neuron, and the Echelon logo
are trademarks of Echelon Corporation registered in the
United States and other countries. LONMARK is a
trademark of LONMARK International registered in the
United States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Smart Transceivers, Neuron Chips, and other OEM
Products were not designed for use in equipment or
systems which involve danger to human health or safety
or a risk of property damage and Echelon assumes no
responsibility or liability for use of the Smart Transceivers,
Neuron Chips, or other OEM Products in such
applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©1997–2013 by Echelon
Corporation.
Echelon Corporation
www.echelon.com

LONMARK Resource File API Reference Guide iii

Table of Contents
Table of Contents .. iii
Introduction ... 7
What’s New in this Release .. 8
Installing the LONMARK Resource File API ... 9
Catalog Functions ... 9

LdrfOpenCatalog ... 9
LdrfGetCatalogInfo .. 10
LdrfCloseCatalog ... 11
LdrfCatalogAddDir .. 11
LdrfCatalogGetDir ... 12
LdrfCatalogRmvDir ... 12
LdrfCatalogRefresh ... 13
LdrfCatalogAddFile ... 14
LdrfCatalogGetFile .. 14
LdrfCatalogRmvFile .. 15
LdrfSearchCatalog ... 15
LdrfCatalogDependencyCode .. 16
LdrfMatchProgID ... 17

General File Functions ... 17
LdrfOpenFile .. 18
LdrfEnableExtendedSNVTID ... 19
LdrfEditFile .. 19
LdrfGetFileHdrInfo ... 20
LdrfSetFileHdrInfo .. 21
LdrfGetFileVersion .. 22
LdrfSetFileVersion .. 22
LdrfCloseFile .. 23
LdrfGetLangFileInfo .. 24
LdrfExtendedDataTypeAware .. 24
LdrfConvertFile ... 25
LdrfPurgeFile ... 26
LdrfEditFileVer .. 27
LdrfEnableEmptyEntries .. 27

Language File Functions .. 28
LdrfSetLangFileInfo .. 28
LdrfGetResourceString .. 28
LdrfDeleteResourceString ... 29
LdrfSetASCIIResource .. 30
LdrfFindEmptyResourceString .. 31
LdrfValidateResourceString ... 31
LdrfGetNumLanguages ... 32
LdrfGetLanguageInfo .. 32
LdrfGetLanguageKeyFromLocale .. 34
LdrfGetLanguageKeyFromMSLocaleID .. 34
LdrfGetLanguageKeyFromExtension .. 35
String Service Functions ... 36

LdrfStartStringService ... 36
LdrfAddStringServiceLocale .. 37
LdrfStringServiceRequest .. 37

iv LONMARK Resource File API Reference Guide

LdrfStopStringService .. 38
Type File Functions .. 38

Type File Access Functions ... 39
LdrfGetTypeFileInfo ... 39
LdrfSetTypeFileInfo ... 40

Enum Set Access Functions for a Type File ... 40
LdrfChangeSelectedEnumSetFile ... 41
LdrfChangeSelectedEnumSetTag ... 41
LdrfDeleteEnumMemberByIndex ... 42
LdrfSelectEnumSet .. 42
LdrfSelectEnumSetByTag ... 43
LdrfSelectEnumSetByFile ... 44
LdrfSelectNewEnumSet ... 44
LdrfDeleteEnumSet .. 45
LdrfGetEnumMember .. 45
LdrfGetEnumValue .. 46
LdrfGetEnumMemberCount .. 47
LdrfGetEnumMemberByIndex .. 47
LdrfSetEnumMember... 48
LdrfValidateEnumSet .. 48

NVT Access Functions for a Type File .. 49
LdrfGetNVT .. 49
LdrfGetNVTEx .. 50
LdrfGetNVTByName .. 50
LdrfGetNVTByNameEx ... 51
LdrfLookupTypeNameString ... 52
LdrfSetNVT ... 52
LdrfSetNVTEx .. 53
LdrfSetNVTObsolete .. 54
LdrfGetNVTObsolete .. 55
LdrfFindEmptyNVT ... 55
LdrfDeleteNVT ... 56
LdrfValidateNVT .. 56

CPT Access Functions for a Type File .. 57
LdrfGetCPT ... 57
LdrfGetCPTEx .. 58
LdrfGetCPTEx2 .. 59
LdrfGetCPTByName .. 60
LdrfGetCPTByNameEx .. 60
LdrfGetCPTByNameEx2 .. 61
LdrfFreeByteArray ... 62
LdrfSetCPT ... 62
LdrfSetCPTEx ... 63
LdrfSetCPTEx2 ... 64
LdrfSetCPTObsolete ... 65
LdrfGetCPTObsolete .. 66
LdrfFindEmptyCPT .. 67
LdrfDeleteCPT .. 67
LdrfValidateCPT .. 68

Type Tree Functions .. 68
LdrfFreeTypeTree ... 68
LdrfGetNextSupportedNVTType .. 69
LdrfGetTypeNameString ... 70

LONMARK Resource File API Reference Guide v

LdrfNewTypeTreeNode .. 70
LdrfResolveAllTypeTreeRefs ... 71
LdrfSetScalarDetails .. 72
LdrfSetScalar64Details .. 73
LdrfSetScalarInvalidValue .. 73
LdrfSetScalar64InvalidValue .. 74
LdrfSetFloatDetails .. 75
LdrfSetDoubleFloatDetails .. 75
LdrfSetBitfieldDetails .. 76
LdrfSetEnumDetails .. 77
LdrfSetArrayDetails ... 77
LdrfSetStructUnionDetails .. 78
LdrfSetReferenceDetails .. 78
LdrfScanTypeTree .. 79
LdrfFindTypeTreeNode .. 80
LdrfReadTypeTreeNode ... 80
LdrfGetScalarDetails ... 81
LdrfGetScalar64Details ... 82
LdrfGetScalarInvalidValue .. 83
LdrfGetScalar64InvalidValue .. 83
LdrfGetFloatDetails ... 84
LdrfGetDoubleFloatDetails ... 85
LdrfGetBitfieldDetails .. 85
LdrfGetEnumDetails .. 86
LdrfGetArrayDetails .. 87
LdrfGetStructUnionDetails ... 87
LdrfGetReferenceDetails .. 88
LdrfGraftReference ... 89
LdrfApplyValOverride .. 90
LdrfApplyValOverrideEx ... 90

Functional Profile Template File Functions ... 91
LdrfGetFPTFileInfo ... 91
LdrfSetFPTFileInfo ... 92
LdrfGetFPT .. 92
LdrfGetFPTEx.. 93
LdrfGetFPTByName.. 94
LdrfGetFPTByNameEx ... 95
LdrfGetFPTByKey ... 96
LdrfGetFPTByKeyEx .. 97
LdrfSetFPT ... 97
LdrfSetFPTEx .. 98
LdrfGetFPTNV... 99
LdrfGetFPTNVEx .. 100
LdrfGetFPTNVEx2 .. 102
LdrfGetFPTCP ... 103
LdrfGetFPTCPEx .. 104
LdrfGetFPTCPEx2 .. 105
LdrfGetFPTNVMemberNumber ... 107
LdrfGetFPTCPMemberNumber ... 107
LdrfGetFPTNVIndex ... 108
LdrfGetFPTCPIndex.. 108
LdrfGetFPTCPByAttributes ... 109
LdrfGetFPTCPByAttributesEx ... 111

vi LONMARK Resource File API Reference Guide

LdrfSetFPTNV ... 112
LdrfSetFPTNVEx .. 113
LdrfSetFPTNVEx2 .. 114
LdrfChangeFPTNVMemberNumber .. 115
LdrfSetFPTCP .. 116
LdrfSetFPTCPEx ... 117
LdrfSetFPTCPEx2 ... 119
LdrfChangeFPTCPMemberNumber ... 120
LdrfSetFPTCPArrayDetails .. 120
LdrfGetFPTCPArrayDetails ... 121
LdrfGetFPTInherit .. 122
LdrfSetFPTInherit ... 122
LdrfClearFPTInherit ... 123
LdrfSetFPTObsolete .. 123
LdrfGetFPTObsolete .. 124
LdrfFindEmptyFPT ... 125
LdrfDeleteFPT ... 125
LdrfValidateFPT .. 126
LONMARK Resource File API COM Interface ... 126

Utility Functions ... 127
LdrfCheckHeaderCRC ... 127
LdrfCheckDataCRC ... 128
LdrfCheckCRC ... 128
LdrfGetDRFAPIErrorString ... 129
LdrfGetDRFAPIVersion .. 129
LdrfSupportedFormats .. 130

LONMARK Resource File API Reference Guide 7

Introduction
LONMARK resource files are files that define the components of the external interface for one
or more devices that communicate using the ISO/IEC 14908-1 control networking protocol.
These files allow installation tools and operator interface applications to interpret data
produced by a device and to correctly format data sent to a device. They also help a system
integrator or system operator to understand how to use a device and to control the functional
blocks on a device. Standard resource files are available that define the standard
components used in the device interface of a device. Device manufacturers must create user-
defined resource files for any user-defined components defined within the device interface of
a device.

The LONMARK Resource File Developer’s Guide describes the different types of resource files,
and describes procedures for creating resource files. This reference guide describes
application programming interface (API) that can be used to access LONMARK resource files.

The LONMARK Interoperability Association provides the standard LONMARK resource files
and API as an application for 64-bit and 32-bit Windows that installs the current version of
the standard resources files and an API for Windows applications to read and write resource
files.

The LONMARK Resource File API has three interfaces. One of the interfaces included with
the standard resource files is a standard dynamic link library named LCADRF32.DLL to
read and write LONMARK resource files. A second standard library named LDRF32R.DLL
is also provided for read-only access to the LONMARK resource files. Both DLLs support a C-
language API, which can also be accessed from many other languages. Literals and function
prototypes are provided for C programmers with the lcadrf.h header file. Source code is
provided for the read-only version. You can port the source code to other platforms to
provide read-only access to resource files on any platform.

The second interface included with the LONMARK Resource File API is a COM component
that provides a language-independent interface. The COM interface is described under
LONMARK Resource File API COM Interface. The COM Interface is language independent
and can be used from applications written in any programming language that supports COM
interfaces. The interface is defined with a COM type library (TLB), but programmers may
find the C-language lcadrf.h header file helpful for orientation.

The COM interface supports the same operations as the C-language interface with minor
differences to the names of the entry points, and the translation of LONMARK resource file-
specific data types into COM-compliant, general-purpose, types.

The LONMARK Resource File API supports type definitions in the wider sense of the word.
These type definitions include enumerations, network variable types, and configuration
property types, which are similar to a C-language typedef, but include much more
information about the semantics of a type, restrictions, options, and even data values for
minima, maxima, initialization and so forth. These definitions are also supported by
descriptive texts, which can support multiple languages.

These types are stored in type files (.TYP extension) and language files (with various file
extensions, subject to the supported language). Definitions of enumerations also have a C-
language counterpart (a .H file with a C-language type definition).

8 LONMARK Resource File API Reference Guide

The LONMARK Resource File API also supports functional profile definitions. Functional
profiles group a number of network variables and configuration properties into a larger
entity, which is then used to implement a functional block (also known as a LONMARK object).
Like the types, functional profile definitions are enriched by descriptive texts, values and
restrictions. The functional profiles are stored in functional profile template files (.FPT
extension) and language files.

Another file supported by the LONMARK Resource file API is the format file (.FMT
extension). Format files define rules for the presentation of data.

The type file, functional profile template file, format file, and language files together form a
resource file set. All files in a resource file set share the same program ID and scope, and
typically share the same base file name. For example, the standard resource file set includes
standard.typ, standard.fpt, standard.enu, standard.eng, and standard.fmt files.

The resource file sets are organized in a resource catalog. The catalog is implemented in a
file called ldrf.cat, which typically resides in the types folder of the LONWORKS directory.
The catalog lists individual resource files (through their file path) as well as entire folders
(which can include multiple resource sets). The catalog forms the central repository of
resource file sets, and supplies search operations through the LONMARK Resource File API.

The following sections describe the LONMARK Resource File API functions. Each function
description specifies whether it is available in each of the three interfaces available for the
API.

All functions return an error code with a prefix of LDRF_ERR_. The zero error code,
corresponding to the LDRF_ERR_NONE enumeration value, means there was no error.
Most functions use or return a pointer to an ldrfFileInfo structure. This structure
encapsulates the file header contents and internal control information.

The functions are organized in logical groups, and are documented in the remainder of this
document in those groups. Those groups include functions related to the catalog, functions
related to type files and functional profile template files, functions related to type tree
operations, and basic utility functions. Each group is briefly introduced at the beginning of
each section, and the API functions in the group are listed in alphabetical order.

Notes:

The Get() functions in the LONMARK Resource File API specify ouput parameters using
pointers. In addition, you may specify a NULL pointer for any reference parameter that you
do not require to be returned by a given Get() function.

LONMARK Resource File API indices are one-based. This means that an index value of 0
means “unknown, not specified.”

What’s New in this Release
This release includes support for version 6 type files and version 5 functional profile template
files. Version 6 type files add support for new 64-bit signed and unsigned integer data types
and expand the SNVT ID to support more than 250 SNVTs. To provide backward
compatibility, support for these new data types and extended SNVT IDs is not enabled by

LONMARK Resource File API Reference Guide 9

default in the version 2.4 LONMARK Resource File API. Instead, applications must inform
the API that they can support these new types. A new flag bytes hase been added to network
variable types, configuration property types, and functional profiles. The new flag bytes are
reserved for future expansion—no new flags have been defined for the version 2.4 LONMARK
Resource File API.

Installing the LONMARK Resource File API

The LONMARK Resource File API is used by a number of tools, including all LNS® and
OpenLNS based tools and the LonMaker®Integration Tool. On Windows platforms, these
tools share a single LONMARK Resource File API for Windows, which is installed by the
LONMARK Standard Resource Files installer.

Source code is available for an API that provides read-only access to LONMARK resource files.
You can download a .zip file containing this source code from the LONMARK Web site at
www.lonmark.org/technical_resources/resource_files. After you download the .zip file,
extract the source files in the archive to a working directory, and then port the files to your
target platform.

Catalog Functions
The LONMARK resource file catalog provides the central repository for LONMARK resource
files and file sets. Applications can open the catalog, search the catalog, and close the
catalog. Functions to change the catalog’s content are also provided. While individual type
files can be accessed even when not registered with the catalog, the catalog’s search functions
only inspect registered resource files. Opening, searching and closing the catalog is the first
set of API functions that are used for most LONMARK Resource File API client applications.

LdrfOpenCatalog

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfOpenCatalog(LPCSTR directory, TBool readOnly,
 PLdrfFileInfo *ppInfo)

COM Interface Prototype

LdrfCatalog.OpenCatalog(BSTR directory, long readOnly,
 long *ppInfo, long *returnCode)

Purpose

This function is called to open an existing resource file catalog or create a new resource file
catalog. The catalog must be opened without the readOnly flag being set to TRUE if it
needs to be created. The catalog is typically located in the Types folder within your local
LONWORKS folder as is the standard resource file set (however, both catalogs do not need to

10 LONMARK Resource File API Reference Guide

be stored in the same location). The folder name containing the standard.typ file is the
directory input parameter.

An ldrfFileInfo structure pointer is returned if successful. The folder where the catalog
resides is added to the list of directories in the catalog. When a new catalog is created, or a
catalog marked stale is opened, it is then automatically refreshed if the readOnly flag is not
set. The readOnly flag is intended for use by multiple simultaneous applications that need
only read-access to the catalog, since only one application can be a writer to the file at a time,
and that write access is granted exclusively to one application by the operating system,
preventing any other applications from having any access.

To prevent locking out other applications from the catalog, close the catalog at the earliest
opportunity (and re-open later, if necessary) because of the exclusive nature of write access to
the catalog, See LdrfCloseCatalog() for more information.

If the refresh fails or does not occur, the catalog will remain stale. A catalog is marked stale
when one or more entries in the list of folders is added or removed. The stale property does
not reflect whether the current folder contents (the list of files) has changed since the last
refresh.

Return Values

LDRF_ERR_NOT_FOUND No folder of that name was found, or, if readOnly is set, then
no catalog file was found.

LDRF_ERR_NO_ACCESS Can’t get access to open the file.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_CATALOG The file header of the file was not correct for a resource file
catalog.

LDRF_ERR_CRC The file data did not pass the CRC check.

LdrfGetCatalogInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCatalogInfo(PLdrfFileInfo pInfo, PBool pStale,
 PUShort pNumDirec, PUShort pNumLangFiles,
 PUShort pNumTypeFiles, PUShort pNumFPTFiles,
 PUShort pNumFormatFiles)

COM Interface Prototype

LdrfCatalog.GetCatalogInfo(long pInfo, long *pStale, long *pNumDirec,
 long *pNumLangFiles, long *pNumTypeFiles,
 long *pNumFPTFiles, long *pNumFormatFiles)

Purpose

This function is used to retrieve the current catalog status information and statistics needed
before listing the contents of the catalog. The number of known language files, type files,

LONMARK Resource File API Reference Guide 11

functional profile files, and format files includes those detected in monitored folders (whose
number is reported through the pNumDirec output parameter) and those registered
explicitly.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LdrfCloseCatalog

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCloseCatalog(PLdrfFileInfo pInfo)

COM Interface Prototype

LdrfCatalog.CloseCatalog(long pInfo, long *returnCode)

Purpose

This function is called to close an open resource file catalog. The ldrfFileInfo structure for
the open catalog is the only parameter. A stale catalog can be closed, and its stale state will
be remembered.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogAddDir

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogAddDir(PLdrfFileInfo pInfo, LPCSTR newDir)

COM Interface Prototype

LdrfCatalog.CatalogAddDir(long pInfo, BSTR newDir, long *returnCode)

Purpose

This function is called to add a directory to an existing, open resource file catalog. The
ldrfFileInfo structure pointer for the open catalog is the first parameter, and the string
containing the new directory name is the second parameter. Once this is done, the catalog is
stale, and a refresh operation is required to bring it up to date before using it to search for a
file. Opening a stale catalog is sufficient to bring it up to date, as the catalog is self-
refreshing if marked stale.

12 LONMARK Resource File API Reference Guide

When the catalog is being refreshed, the LONMARK Resource File API scans all registered
folders and detects any resource files present, which then become available to catalog search
operations. This process can slow down refreshing and opening the catalog when many large
directories are registered. For faster process use LdrfCatalogAddFile() to explicitly
register resource files instead.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_NO_ACCESS Don’t have write access to the file.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogGetDir

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogGetDir(PLdrfFileInfo pInfo, TUShort index,
 LPSTR pDirName, PUShort pLength)

COM Interface Prototype

LdrfCatalog.CatalogGetDir(long pInfo, long index, BSTR *pDirName,
 long *returnCode)

Purpose

This function is called to retrieve the name of the folder that corresponds to the given index
into the folder list. This is useful for listing out the folders of the catalog. The folder names
are not alphabetized. You can get the total number of registered folders using
LdrfGetCatalogInfo().

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_TRUNC Filename string was truncated to fit buffer.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogRmvDir

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogRmvDir(PLdrfFileInfo pInfo, LPCSTR oldDir)

LONMARK Resource File API Reference Guide 13

COM Interface Prototype

LdrfCatalog.CatalogRmvDir(long pInfo, BSTR oldDir, long *returnCode)

Purpose

This function is called to remove a folder from an existing, open resource file catalog. The
ldrfFileInfo structure pointer for the open catalog is the first parameter, and the string
containing the directory name to be removed is the second parameter. The side effect is that
all information about files in that folder are also removed from the catalog. The catalog is
not marked as stale as the result of a remove operation.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No folder of that name was found.
LDRF_ERR_NO_ACCESS Don’t have write access to the file.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogRefresh

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogRefresh(PLdrfFileInfo pInfo)

COM Interface Prototype

LdrfCatalog.CatalogRefresh(long pInfo, long *returnCode)

Purpose

This function is called to refresh an existing, open resource file catalog. A catalog that was
marked stale before the refresh will no longer be stale after successful completion of the
refresh. All file information is refreshed during a refresh operation. Files that were added
via an earlier operation are verified, and if they don't exist, they are removed from the
catalog. All new resource files in the folders in the catalog are added. The ldrfFileInfo
structure pointer for an open catalog is the only parameter.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_NO_ACCESS Don’t have write access to the file.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

14 LONMARK Resource File API Reference Guide

LdrfCatalogAddFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogAddFile(PLdrfFileInfo pInfo, LPCSTR newFile)

COM Interface Prototype

LdrfCatalog.CatalogAddFile(long pInfo, BSTR newFile, long *returnCode)

Purpose

This function is called to add a single file to an existing, open resource file catalog. The
catalog does not become stale. The ldrfFileInfo structure pointer and the file name (full
pathname) are the parameters.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No file of that name was found.
LDRF_ERR_NO_ACCESS Don’t have write access to the file.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogGetFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogGetFile(PLdrfFileInfo pInfo, TLdrfFileType fileType,
 TUShort index, PUByte pMatchMode,
 PUByteArray pProgID, PUShort pDirIndex,
 PUShort pMajorVersion, PUByte pMinorVersion,
 PULong pLocale,
 LPSTR pFileName, PUShort pLength)

COM Interface Prototype

LdrfCatalog.CatalogGetFile(long pInfo,
 TLdrfFileType fileType, TUShort index,
 PUByte pMatchMode, PUByteArray pProgID,
 PUShort pDirIndex, PUShort pMajorVersion,
 PUByte pMinorVersion, PULong pLocale,
 BSTR pFileName)

Purpose

This function is called to retrieve information about a file in the catalog, given the file type
and an index. You can use this function for listing all or a subset of the files in the catalog.

LONMARK Resource File API Reference Guide 15

The function returns all the information in the catalog regarding the particular file. The
associated directory name can be retrieved by calling the LdrfCatalogGetDir() function
using the directory index returned by this function. A file may not have an associated folder,
if it was placed in the catalog explicitly via the LdrfCatalogAddFile() function, and in that
case, the associated directory index is 0.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_TRUNC Filename string was truncated to fit buffer.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogRmvFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogRmvFile(PLdrfFileInfo pInfo, LPCSTR oldFile)

COM Interface Prototype

LdrfCatalog.CatalogRmvFile(long pInfo, BSTR oldFile, long *returnCode)

Purpose

This function is called to remove a single file from an existing, open resource file catalog.
The catalog does not become stale. The ldrfFileInfo structure pointer and the file name
(full pathname) are the parameters.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No file of that name was found.
LDRF_ERR_NO_ACCESS Don’t have write access to the file.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfSearchCatalog

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSearchCatalog(PLdrfFileInfo pInfo, PUByteArray pProgID,
 TUByte matchMode, TLdrfFileType fileType,
 TULong locale, LPSTR pFile, PUShort pLength,
 PUShort pMajorVersion, PUByte pMinorVersion)

16 LONMARK Resource File API Reference Guide

COM Interface Prototype

LdrfCatalog.SearchCatalog(long pInfo, BSTR progID,
 long matchMode, long fileType, long locale,
 BSTR *pFile,
 long *pMajorVersion, long *pMinorVersion
 long *returnCode)

Purpose

This function is called to retrieve a full pathname for a resource file given a program ID, a
matching scope selector (0-6) for the matchMode, and the type of file to retrieve from the
catalog. The file types are given by the TLdrfFileType enumeration. An
LDRF_WILD_CARD value can also be specified for the file type, and all files will be
returned (one file name per call, sequentially, until a LDRF_ERR_NOT_FOUND code is
returned). In the case of language resource files, you must also specify the language locale
code, unless the first of all such matching files is desired. Since matching selector 0 selects
the standard file, it doesn't use the program ID, and the program ID pointer can be NULL if
desired in that one case. A matching selector of a specific value, for example ‘3’, will only
match on a file which also has matching selector ‘3’. You can use a matching selector value
of ‘0xFF’ to find the first file matching a given program ID using the matching algorithm,
that is, a file with ‘6’ that matches, if one exists, else a file with ‘5’, else ‘4’, etc. A pointer to
a buffer capable of holding the full pathname is passed in, along with the length of the buffer.
Along with the filename, the major and minor content data version numbers are returned.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_FILE_TYPE The file type requested isn’t valid.

LDRF_ERR_NOT_FOUND No file matching the request was found.

LDRF_ERR_TRUNC Filename string was truncated to fit buffer.

LDRF_ERR_STALE The catalog can't be searched, it needs a refresh.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCatalogDependencyCode

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCatalogDependencyCode(PLdrfFileInfo pInfo,
 PUByteArray pProgID, PULong pDepCode)

COM Interface Prototype

LdrfGeneral2.CatalogDependencyCode(long pInfo,
 BSTR progID, long *pDepCode
 long *returnCode)

LONMARK Resource File API Reference Guide 17

Purpose

This function calculates a dependency code that reflects the state of the subset of resource
files in the catalog that match the specified program ID. This code does not vary as a result
of a refresh, unless the list or content of the applicable resource files also changes. An
application can use this to obtain an easy check on whether resource files, based on a
program ID, have changed since the last time this function was called.

Return Values

LDRF_ERR_NOT_FOUND No file of that name was found.

LdrfMatchProgID

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfMatchProgID(TUByte matchMode,
 PUByteArray pFileRefID, PUByteArray pProgID)

COM Interface Prototype

LdrfCatalog.MatchProgID(long matchMode, BSTR fileRefID, BSTR progID,
 long *returnCode)

Purpose

This function is called to match two reference or program IDs using the scope selector value
(1-6) given for the matchMode parameter. If called with scope selector 0, the file reference
ID must be all zeros, and the program ID is not used.

Return Values

LDRF_ERR_NOT_FOUND No file of that name was found.

General File Functions
This section introduces functions that are used with all LONMARK resource files (but not the
catalog itself). Exceptions are noted where necessary. The general file functions include
opening and closing files, and reading and writing global information related to each
resource file.

18 LONMARK Resource File API Reference Guide

LdrfOpenFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfOpenFile(LPCSTR path, TLdrfFileType fileType,
 TUShort majorVersion, TBool checkCRC,
 PLdrfFileInfo *ppInfo)

COM Interface Prototype

LdrfGeneral.OpenFile(BSTR path, long fileType,
 long majorVersion, long checkCRC,
 long *ppInfo, long *returnCode)

Purpose

This function is called to open an existing file for access, supplying the pathname and
optionally the minimum data major-version level needed. If no minimum data version level
is needed, a 0 is used instead.

Although the function may be used to open a resource file not registered with the catalog,
resource files that are not in the catalog are not searched when you search for a particular
resource.

The ppInfo reference parameter is filled in if the operation was successful. Files below the
minimum version are still opened successfully. The file CRCs are checked if requested
through the checkCRC argument, but you can check them separately (see the
LdrfCheckHeaderCRC() and LdrfCheckDataCRC() functions). If a file does not pass
CRC check and a CRC check was requested, it is still opened, but the CRC error is returned.
It's up to the caller to decide what to do then.

Return Values
LDRF_ERR_NOT_FOUND No file of that name was found.
LDRF_ERR_FILE_TYPE The file type requested isn’t valid.
LDRF_ERR_SYS System error, for example due to exceeding available file

handles, disk space, or memory.
LDRF_ERR_NOT_RESOURCE The file header of the file was not correct for a resource file (if

it was a resource file that was requested).
LDRF_ERR_NOT_TYPE The file header of the file was not correct for a TYP file (if it

was a type file that was requested).
LDRF_ERR_NOT_FPT The file header of the file was not correct for a FPT file (if it

was an FPT file that was requested).
LDRF_ERR_FMT_VERSION The major format version is not supported.
LDRF_ERR_VERSION The data content major-version is lower than the minimum.
LDRF_ERR_CRC The header or data CRC check did not pass.

LONMARK Resource File API Reference Guide 19

LdrfEnableExtendedSNVTID

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfEnableExtendedSNVTID()

COM Interface Prototype

LdrfMiscFns2.EnableExtendedSNVTID()

Purpose

This function enables extended SNVT ID support. Applications that do not call this function
are limited to 250 SNVT IDs. Applications that call this function can support up to 32766
SNVT IDs. SNVT ID 255 is reserved for identifying extended SNVT IDs.

This function must be called immediately following a successful LdrfOpenFile() or
LdrfEditFile() call.

This function may be called for any valid LdrfFileInfo pointer, but only has effect for type,
functional profile, and catalog files. Client tools must call LdrfFindEmptyNVT() to
allocate an ID to a new resource. SNVT-ID 255 appears as an empty record, but
LdrfFindEmptyNV() does not allocate it. UNVTs can be allocated in the 1…4095 UNVT
ID range.

Return Values

LDRF_ERR_NOT FOUND No file of that name was found.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record.

LdrfEditFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfEditFile(LPCSTR path, TLdrfFileType fileType,
 PLdrfFileInfo *ppInfo)

COM Interface Prototype

LdrfGeneral.EditFile(BSTR path, long fileType, long *ppInfo,
 long *returnCode)

20 LONMARK Resource File API Reference Guide

Purpose

This function begins the creation of a new file of the type requested, or if the file already
exists, opens the file for editing. The pathname is supplied.

If successful, a ppInfo reference parameter is filled in (or partially filled in, if a new file, see
LDRF_ERR_NEW below). A file's CRCs will be checked before a successful open-for-edit. If
a file does not pass data CRC check and header CRC check, it is not opened, and the CRC
error is returned.

Return Values

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_FILE_TYPE The file type requested isn’t valid.

LDRF_ERR_NOT_RESOURCE The file header of the file was not correct for a resource file (if
it was a resource file that was requested).

LDRF_ERR_NOT_TYPE The file header of the file was not correct for a type file (if it
was a type file that was requested).

LDRF_ERR_NOT_FPT The file header of the file was not correct for a function profile
(if it was a functional profile that was requested).

LDRF_ERR_FMT_VERSION The major or minor format version is not supported.

LDRF_ERR_NEW The file was created. Caller must then use the
LdrfSetFileHdrInfo and LdrfSetFileVersion functions in
either order prior to closing the file.

LDRF_ERR_CRC The header or data CRC check did not pass.

LdrfGetFileHdrInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFileHdrInfo(PLdrfFileInfo pInfo, PBool pUser,
 LPSTR pDesc, PUShort pDescLen,
 LPSTR pCreator, PUShort pCreLen,
 LPSTR pURL, PUShort pURLLen,
 PUByte pResDescSel, PULong pResDescIndex,
 PUByte pResCreSel, PULong pResCreIndex);

COM Interface Prototype

LdrfGeneral.GetFileHdrInfo(long pInfo, long * pUser, BSTR * pDesc,
 BSTR * pCreator, BSTR * pURL,
 long * pResDescSel, long * pResDescIndex,
 long * pResCreSel, long * pResCreIndex,
 long * returnCode)

LONMARK Resource File API Reference Guide 21

Purpose

This function returns information strings and string resource references from an open file’s
header. This works for all resource file types (language files, type files, and functional
profiles), as the types of information are identical. To open the file, use the appropriate open
function from the appropriate file-specific sections below.

To retrieve the resource strings for extended creator information and descriptions, see the
string resource functions.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_TRUNC String or strings was/were truncated to fit buffer.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfSetFileHdrInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFileHdrInfo(PLdrfFileInfo pInfo, LPCSTR creator,
 LPCSTR phone, LPCSTR webid, LPCSTR URL,
 TUByte resDescSel, TULong resDescIndex,
 TUByte resCreSel, TULong resCreIndex);

COM Interface Prototype

LdrfGeneral.SetFileHdrInfo(long pInfo,
 BSTR creator, BSTR phone, BSTR webid, BSTR URL,
 long resDescSel, long resDescIndex,
 long resCreSel, long resCreIndex,
 long * returnCode)

Purpose

This function creates or modifies information strings and resource references in an open
file’s header. This works for all resource file types, as the information is identical. To open
the file, use LdrfEditFile().

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

22 LONMARK Resource File API Reference Guide

LdrfGetFileVersion

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFileVersion(PLdrfFileInfo pInfo,
 PUByte pMajorFmtVer, PUByte pMinorFmtVer,
 PUShort pMajorDataVer, PUByte pMinorDataVer,
 PUShort pYear, PUByte pMonth, PUByte pDay,
 PUByte pHour, PUByte pMinute, PUByte pSecond,
 PUByte pSel, PUByteArray *ppRefID);

COM Interface Prototype

LdrfGeneral.GetFileVersion(long pInfo,
 long *pMajorFmtVer, long *pMinorFmtVer,
 long *pMajorDataVer, long *pMinorDataVer,
 long *pYear, long *pMonth, long *pDay,
 long *pHour, long *pMinute, long *pSecond,
 long *pSel, BSTR *pRefID, long *returnCode)

Purpose

This function returns version information and timestamp data from an open file’s header.
The reference ID and scope values are also returned. This works for all resource file types
(language files, type files, and functional profiles), as the types of information are identical.
To open the file, use LdrfOpenFile() or LdrfEditFile(), as appropriate. For the C
language API, the reference ID is allocated as a byte array (of 8 bytes) and is filled in. Your
application must call the LdrfFreeByteArray() function to free the returned byte
arraywhen your application is done with it. For the COM API, the reference ID is allocated
as a BSTR.

Return Values

LDRF_ERR_FILE_INFO The file info structure contents was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfSetFileVersion

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFileVersion(PLdrfFileInfo pInfo,
 TUShort majorDataVer, TUByte minorDataVer,
 TUByte sel, PUByteArray pRefID);

LONMARK Resource File API Reference Guide 23

COM Interface Prototype

LdrfGeneral.SetFileVersion(long pInfo,
 long majorDataVer, long minorDataVer,
 long sel, BSTR refID, long *returnCode)

Purpose

This function creates or modifies version information and reference information in an open
file’s header. This works for all resource file types (language files, type files, and functional
profiles), as the types of information are identical. This function cannot be used to change
the version number of the standard resource file set. To open the file, use LdrfEditFile().
For the C language API, the pRefID parameter must point to a byte array that contains
eight bytes. For the COM API, the reference ID is a BSTR.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_PARAM A parameter isn’t valid. This can be returned if the refID

format is invalid or if this function is called with the standard
resource file.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfCloseFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCloseFile(PLdrfFileInfo pInfo)

COM Interface Prototype

LdrfGeneral.CloseFile(long pInfo, long *returnCode)

Purpose

This function closes a previously opened resource file. If the file was being edited or created,
new header information is built (including the directory) and written to the file, the file is
packed if previous editing actions created gaps, and the header and data CRCs are updated.
A valid info pointer must be passed in. All memory related to the file info structure will be
freed, so the info pointer must not be used again after calling this function.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_SYS System error, for example due to exceeding available file

handles, disk space, or memory.
LDRF_ERR_INCOMPLETE The file has not been completely created.
LDRF_ERR_WRITE Write error, or disk is full.

24 LONMARK Resource File API Reference Guide

LdrfGetLangFileInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetLangFileInfo(PLdrfFileInfo pInfo,
 PULong pLocale, PULong pNumResources)

COM Interface Prototype

LdrfLangResource.GetLangFileInfo(long pInfo,
 long *pLocale, long *pNumResources,
 long *returnCode)

Purpose

This function returns the locale code and the number of resources in the open language
(string) resource file.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LdrfExtendedDataTypeAware

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfExtendedDataTypeAware(PLdrfFileInfo pInfo,
 TNVTType dataType)

COM Interface Prototype

LdrfMiscFns1.ExtendedDataTypeAware(long pInfo,
 long dataType, long *returnCode)

Purpose

This function enables access to the following extended data types:
NVT_TYPE_UNSIGNED_QUAD, NVT_TYPE_DOUBLE_FLOAT,
NVT_TYPE_SIGNED_INT64, and NVT_TYPE_UNSIGNED_INT64. The client must
specify an open resource file and must also specify the most recent data type supported.
Extended data types are defined in a chronologically sorted list according to their time of
introduction. Following is the list, from oldest to newest:

1. NVT_TYPE_UNSIGNED_QUAD
2. NVT_TYPE_DOUBLE_FLOAT
3. NVT_TYPE_SIGNED_INT64
4. NVT_TYPE_UNSIGNED_INT64

To specify support for all four types, specify NVT_TYPE_UNSIGNED_INT64 for the
dataType parameter.

LONMARK Resource File API Reference Guide 25

Without calling this function, these extended types are presented in a backwards compatible
fashion as described in the following table.

Extended Data Type Backward-Compatible Presentation

NVT_TYPE_DOUBLE_FLOAT

For non-structured types: a structure
containing an array of 8 unsigned short
integers in big-endian order

For structured types: a data[] array member
of the existing structure with 8 unsigned
short integers in big-endian order

NVT_TYPE_SIGNED_INT64 For non-structured types: a structure
containing an array of 8 unsigned short
integers in big-endian order

For structured types: a drf_int64[] array
member of the existing structure with 8
unsigned short integers in big-endian order

NVT_TYPE_UNSIGNED_INT64 For non-structured types: a structure
containing an array of 8 unsigned short
integers in big-endian order

For structured types: a drf_uint64[] array
member of the structure with 8 unsigned
short integers in big-endian order

NVT_TYPE_UNSIGNED_QUAD NVT_TYPE_SIGNED_QUAD

To enable extended types for a resource file set, you must call this function for each type file
in the resource file set, each time you open the resource file set.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LdrfConvertFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfConvertFile(LPCSTR pathIn, LPCSTR pathOut,
 TUByte toVersion, TBool checkCRC)

COM Interface Prototype

LdrfGeneral2.ConvertFile(BSTR pathIn, BSTR pathOut,
 long toVersion, long checkCRC,
 long *returnCode)

26 LONMARK Resource File API Reference Guide

Purpose

This function converts a resource file (type, functional profile, or language file) to the
specified version. If toVersion is set to 0, the resource file will be converted to the latest
available version. This function cannot convert version 1 type files, which are not supported
by the LONMARK Resource File API.

When converting a resource file from one format version A to a more recent format version B,
data added in format B may be set to defaults (typically all zeroes). Conversely, if you
downgrade a resource file from format version B to an earlier format version A, the resource
file will lose data in the conversion process. This data will be lost unrecoverably.

Return Values

LDRF_ERR_CRC The data did not pass the CRC check.

LdrfPurgeFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfPurgeFile(LPCSTR pathIn, LPCSTR pathOut,
 TBool checkCRC)

COM Interface Prototype

LdrfGeneral2.PurgeFile(BSTR pathIn, BSTR pathOut,
 long checkCRC, long *returnCode)

Purpose

Resources can be flagged as deleted without actually removing them from the resource file
set. This is done by marking the resource with a name that ends with a tilde ‘~’ character.
The advantage of this deletion method is that it can be undone, and that other types, which
might reference the type marked for deletion, may not break as a result.

However, it is sometimes useful to purge a resource file from all resources marked deleted in
this way. This removes unnecessary ballast that might have accumulated during
development, frees up space, and frees up previously used indices. You can use the
LdrfPurgeFile() function to purge resource files.

Return Values

LDRF_ERR_CRC The data did not pass the CRC check.

LONMARK Resource File API Reference Guide 27

LdrfEditFileVer

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfEditFileVer(LPCSTR path, TLdrfFileType fileType,
 long majFmtForCreate, PLdrfFileInfo * ppInfo)

COM Interface Prototype

LdrfGeneral2.EditFileVer(BSTR path, long fileType,
 long majFmtForCreate, long *ppInfo, long *returnCode)

Purpose

This function creates a resource file with the version specified by the majFmtForCreate
parameter. The parameter is only used if the file does not already exist (in other words, an
existing file won't be converted as a result of this call). If an unsupported major-format-
version is requested and the file does not already exist, an LDRF_ERR_PARAM error is
returned. If a zero is passed for this parameter, the function uses the latest format version.

Return Values

LDRF_ERR_CRC The data did not pass the CRC check.

LDRF_ERR_PARAM The requested major format version is not supported.

LdrfEnableEmptyEntries

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfEnableEmptyEntries(PLdrfFileInfo pInfo)

COM Interface Prototype

LdrfMiscFns1.EnableEmptyEntries(long pInfo, long *returnCode)

Purpose

Version 4 type files, version 3 language files, and version 3 FPT files support resource
deletion, which can leave gaps in the structure of a resource file. This function informs the
LONMARK Resource File API that the application supports empty type records. An empty-
aware application will receive the LDRF_ERR_EMPTY_RECORD return code if it
attempts to get an empty record. An application that is not aware of empty entries will see
placeholder entries. The programmatic name for an empty record will include the text
“empty<index>~”, where <index> indicates the decimal character representation of the
index number of the empty record, and the ‘~’ character is the last character of the name (or
record).

28 LONMARK Resource File API Reference Guide

Gaps are presented as if they hold a resource flagged for deletion (for example, using a name
ending with a tilde ‘~’ character), even if the file has been successfully purged with
LdrfPurgeFile().

Return Values

LDRF_ERR_CRC The data did not pass the CRC check.

Language File Functions
Language files hold strings with alphanumerical information such as descriptions, units, and
names. Many aspects of LONMARK resource files, and the items defined therein, can refer to
these strings through their reference ID and scope value pair and the string index.

You can use the language file functions to define, manage, and obtain localized description
strings and similar textual information. See the next section, String Service Functions, for
more information.

LdrfSetLangFileInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetLangFileInfo(PLdrfFileInfo pInfo, TULong locale)

COM Interface Prototype

LdrfLangResource.SetLangFileInfo(long pInfo,
 long locale, long *returnCode)

Purpose

This function sets the locale code for the open language (string) resource file.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LdrfGetResourceString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetResourceString(PLdrfFileInfo pInfo, TULong index,
 LPSTR pString, PUShort pLength)

LONMARK Resource File API Reference Guide 29

COM Interface Prototype

LdrfLangResource.GetResourceString(long pInfo,
 long index, BSTR *pString,
 long *returnCode)

Purpose

This function retrieves a string from an open resource file. The pInfo parameter is supplied,
along with the index of the resource string in index. The string pointer and length pointer
parameters are supplied by the caller. The length must be set to the maximum size of the
buffer available prior to the call. If the resource string exceeds the length available, it will be
truncated (see error code below).

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No resource with that index was found.

LDRF_ERR_TRUNC Resource string was truncated to fit buffer.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfDeleteResourceString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfDeleteResourceString(PLdrfFileInfo pInfo, TULong index)

COM Interface Prototype

LdrfMiscFns1.DeleteResourceString(long pInfo, long index,
 long *returnCode)

Purpose

This function is called to delete a resource string. Deleted resources do not consume any file
data space. They only have NULL entries in the resource key-access directories.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No resource with that index was found.

LDRF_ERR_TRUNC Resource string was truncated to fit buffer.

LDRF_ERR_FMT_VERSION The function was called on a pre-version 3 language-
dependent-string resource file.

30 LONMARK Resource File API Reference Guide

LdrfSetASCIIResource

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetASCIIResource(PLdrfFileInfo pInfo, TBool shareDup,
 TULong index, LPCSTR string,
 PULong pDupIndex)

COM Interface Prototype

LdrfLangResource.SetASCIIResource(long pInfo,
 long shareDup, long index,
 BSTR string, long *pDupIndex,
 long *returnCode)

Purpose

This function modifies or adds an ASCII resource string, provided the language file has been
opened for editing. An existing resource string will be replaced, but it must already be an
ASCII resource string.

A new ASCII resource string can be added, but only if the index is one larger than the
existing number of resource strings. The index of the string is passed in, as well as the
pInfo parameter and the string pointer. Modified strings may be added at the end of the
file, and a gap in the middle of the file may result. Gaps will be remembered until the file is
closed, at which time it will be packed if necessary, and directories will be rebuilt. The
interface can be asked to share duplicates, or not. If the shareDup parameter is TRUE, the
creation of a new string which duplicates one already in the file will result in the string not
being created, the pDupIndex parameter will be used to return the index of the string
duplicated, and the error code will be LDRF_ERR_DUPLICATE. If the shareDup
parameter is FALSE, the pDupIndex parameter is set to the value of the input index that is
used to set the resource string. The index parameter and the pDupIndex parameter may
be the value and reference, respectively, of the same variable.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_NOT_FOUND No resource with that index was found, or if new, was not
correct.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_DUPLICATE The string is already in the file.

LDRF_ERR_FULL File is full, no more indices can be added.

LONMARK Resource File API Reference Guide 31

LdrfFindEmptyResourceString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFindEmptyResourceString(PLdrfFileInfo pInfo, PULong pIndex)

COM Interface Prototype

LdrfMiscFns1.FindEmptyResourceString(long pInfo, long *pIndex,
 long *returnCode)

Purpose

This function returns the first empty resource string index. If there are no empty resource
string records, this function returns n+1, where n is the number of resource string records in
the file.

Return Values
LDRF_ERR_INTERNAL Internal error.
LDRF_ERR_NOT_FOUND No empty record index is available (only occurs if file is

full).

LdrfValidateResourceString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfValidateResourceString(PLdrfFileInfo pInfo, TUShort Index)

COM Interface Prototype

LdrfMiscFns1.ValidateResourceString(long pInfo, long index,
 long *returnCode)

Purpose

This returns a value that indicates the status of the specified resource string. See Return
Values for more information.

Return Values
LDRF_ERR_PARAM Incorrect parameters supplied.
LDRF_ERR_NOT_FOUND The specified resource string was not found.
LDRF_ERR_INTERNAL Internal error.
LDRF_ERR_NONE The resource string was found and is not empty.
LDRF_ERR_EMPTY_RECORD The resource string is an empty record (i.e. it was

deleted). This error code will only be returned if the
LdrfEnableEmptyEntries() function was called on the
type file.

32 LONMARK Resource File API Reference Guide

LdrfGetNumLanguages

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNumLanguages(LPCSTR pInfDirectory, PUShort pNumLanguages)

COM Interface Prototype

LdrfLangResource.GetNumLanguages(BSTR pInfDirectory,
 long *pNumLanguages, long *returnCode)

Purpose

This function returns the number of languages currently known to the LONMARK Resource
File API. These languages can be accessed with consecutive keys from 1 to n, where n is the
number of languages returned by this function. Specifying the directory containing the
lcadrf32.inf file is optional; a registry key from lcadrf32.infis normally used to find the
.INF file, so the value NULL is normally used for this parameter.

Return Values

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INTERNAL Internal error, algorithm / unexpected error.
LDRF_ERR_PARAM A parameter isn’t valid (the pInfDirectory parameter

doesn’t contain the .INF file, or pNumLanguages isn’t
valid).

LDRF_ERR_NOT_FOUND No language information was found.

LDRF_ERR_TRUNC Directory/file pathname too long for buffer.

LdrfGetLanguageInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetLanguageInfo(LPCSTR pInfDirectory, TULong myLocale, TUShort key,
LPCSTR pCatDirectory, PULong pMSLocaleID, PULong pLocale, PUByteArray
pFileExtension, LPSTR pString, PUShort pLength)

COM Interface Prototype

LdrfLangResource.GetLanguageInfo(BSTR *pInfDirectory,
 long myLocale, long key, BSTR *pCatDirectory, long *pMSLocaleID,
 long *pLocale, BSTR *pFileExtension, BSTR *pString,
 long *returnCode)

LONMARK Resource File API Reference Guide 33

Purpose

This function returns all the language file information that corresponds to a specified key.
This includes the 16-bit locale ID, the 32-bit locale value that can be used with the Catalog
API, the three-letter file extension, and a locale-specific string (in the language of choice)
that can be printed or displayed. Specifying the directory containing the file lcadrf32.inffile
is optional; a registry key from lcadrf32.infis normally used to find the .INF file, so the
value NULL is normally used for this parameter. For a given key, this function can return
the locale, the extension, or a string naming the language, or any combination of these items.
Should any of the return item pointers be NULL, that item will be skipped. To return a
string naming the language, the string is returned in the language requested (if possible).
The string’s language is requested via the myLocale parameter. If the pString parameter
(the string naming the language) is NULL, then the myLocale, pCatDirectory, and
pLength parameters are not used, and can be any value. Otherwise, the pString
parameter must point to a buffer to receive the string, and the pLength parameter must
point to a TUShort variable containing the maximum length of the buffer. The pLength
parameter is only used with the C language API. The length variable will be modified to
contain the actual number of characters in the string upon return. The LONMARK Resoure
File catalog is needed to retrieve the string naming the language. The pCatDirectory
parameter can be NULL, however; unless it is desired to override the registry key that
locates the lonworks\types directory as the home of the ldrf.cat catalog file.

Return Values

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_PARAM A parameter isn’t valid (key not in valid range).

LDRF_ERR_NOT_FOUND No language information was found for the key.

LDRF_ERR_TRUNC Resource string was truncated to fit the buffer, or a
filename/directory name was too long.

LDRF_ERR_NO_ACCESS Can’t get access to open a file.

LDRF_ERR_NOT_CATALOG The file header of the file was not correct for a resource file
catalog.

LDRF_ERR_CRC The file data did not pass the CRC check.

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_FILE_TYPE The file type requested isn’t valid.

LDRF_ERR_STALE The catalog can't be searched, it needs a refresh.

LDRF_ERR_NOT_RESOURCE The file header of the file was not correct for a resource file (if
it was a resource file that was requested).

LDRF_ERR_FMT_VERSION The major format version is not supported.

LDRF_ERR_VERSION The data content major-version is lower than the minimum.

34 LONMARK Resource File API Reference Guide

LdrfGetLanguageKeyFromLocale

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetLanguageKeyFromLocale(LPCSTR pInfDirectory, TULong locale,
 PUShort pKey)

COM Interface Prototype

LdrfLangResource.GetLanguageKeyFromLocale(BSTR *pInfDirectory,
 long locale, long *pKey, long *returnCode)

Purpose

This function returns the key corresponding to the provided locale. Once the key is obtained,
any other language information can also be obtained using the LdrfGetLanguageInfo()
function. Specifying the directory containing the lcadrf32.inffile is optional; a registry key
from lcadrf32.inf is normally used to find the .INF file, so the value NULL is normally used
for this parameter.

Return Values

LDRF_ERR_INTERNAL Internal error, algorithm / unexpected error.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_PARAM A parameter isn’t valid (the pInfDirectory parameter isn’t
valid, or the key is NULL).

LDRF_ERR_NOT_FOUND No .INF file or no language information was found.

LDRF_ERR_TRUNC File pathname was too long to fit in buffer.

LdrfGetLanguageKeyFromMSLocaleID

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetLanguageKeyFromMSLocaleID(LPCSTR pInfDirectory,
 TULong MSLocaleID, PUShort pKey)

COM Interface Prototype

LdrfLangResource.GetLanguageKeyFromMSLocaleID(BSTR *pInfDirectory,
 long MSLocaleID, long *pKey, long *returnCode)

Purpose

This returns the key corresponding to the provided Locale ID, for example the Locale ID for
US English is 0x0409. Once the key is obtained, any other language information can also be
obtained using the LdrfGetLanguageInfo() function. Specifying the directory containing

LONMARK Resource File API Reference Guide 35

the file lcadrf32.inf file is optional; a registry key from lcadrf32.inf is normally used to find
the .INF file, so the value NULL is normally used for this parameter.

Return Values

LDRF_ERR_INTERNAL Internal error, algorithm / unexpected error.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_PARAM A parameter isn’t valid (the pInfDirectory parameter isn’t
valid, or the key is NULL).

LDRF_ERR_NOT_FOUND No .INF file or no language information was found.

LDRF_ERR_TRUNC File pathname was too long to fit in buffer.

LdrfGetLanguageKeyFromExtension

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetLanguageKeyFromExtension(LPCSTR pInfDirectory,
 TUByteArray fileExtension, PUShort pKey)

COM Interface Prototype

LdrfLangResource.GetLanguageKeyFromExtension(BSTR *pInfDirectory,
 BSTR fileExtension, long *pKey, long *returnCode)

Purpose

This function returns the key corresponding to the provided three-character language
extension. Once the key is obtained, any other language information can also be obtained
using the LdrfGetLanguageInfo() function. Specifying the directory containing the
lcadrf32.inf file is optional; a registry key from lcadrf32.inf is normally used to find the
.INF file, so the value NULL is normally used for this parameter.

Return Values

LDRF_ERR_INTERNAL Internal error, algorithm / unexpected error.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_PARAM A parameter isn’t valid (the pInfDirectory parameter isn’t
valid, or the key is NULL).

LDRF_ERR_NOT_FOUND No .INF file or no language information was found.

LDRF_ERR_TRUNC File pathname was too long to fit in buffer.

36 LONMARK Resource File API Reference Guide

String Service Functions

String service functions provide a simple API to retrieve resource strings. Resource strings
are always referenced through their scope and index value pairs, combined with the
reference ID and scope of the file that contains the reference. You can use string service
functions to locate the referenced string in the current locale, and you can use the string
functions’ prioritized list of locales for automatic substitutions if the first choice of languages
is unavailable.

For example, an application can register French as the first choice language and Spanish as
the second choice. English (US English) is always automatically used as the lowest priority
choice, and does not require explicit registration. The string service API can then retrieve a
given string, referenced by its index and scope value pair, in French, if available. Spanish
language will be supplied as the second choice, and so forth.

LdrfStartStringService

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfStartStringService(TUlong locale, LPCSTR directory,
 PserviceID, pID)

COM Interface Prototype

Ldrf LdrfLangResource.StartStringService(long locale, BSTR directory,
 long* pID, long *returnCode)

Purpose

This function begins a string service session. During a string service session you can request
language strings in the language provided in the locale parameter. This function returns a
service ID that is used to identify the string service in other functions.

Return Values

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_TRUNC Directory/filename was truncated to fit buffer.

LDRF_ERR_STALE The catalog can't be searched, it needs a refresh.
LDRF_ERR_PARAM A parameter isn’t valid.

LDRF_ERR_STRING_SERVICE The service ID is not a valid service (internal error in this
function, since it allocates the service ID).

LONMARK Resource File API Reference Guide 37

LdrfAddStringServiceLocale

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfAddStringServiceLocale(TServiceID id, TULong locale)

COM Interface Prototype

LdrfLangResource.AddStringServiceLocale(long id, long locale,
 long *returnCode)

Purpose

This function adds a locale to the list of locales that will be searched by the
LdrfStringServiceRequest() function. When this function is called, any string currently
in the cache is cleared.

Return Values

LDRF_ERR_PARAM A parameter isn’t valid (the id is NULL).

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_STRING_SERVICE The service ID provided is not a valid service.

LdrfStringServiceRequest

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfStringServiceRequest(TServiceID id, PUByteArray pProgID,
 TUByte scope, TULong index, LPSTR string, PUShort pLength)

COM Interface Prototype

LdrfLangResource.StringServiceRequest(long id, BSTR *pProgID,
 long scope, long index, BSTR string, long *returnCode)

Purpose

This function returns the requesting string from the locale provided in the
LdrfStartStringService() function. If multiple locales have been provided via the
LdrfAddStringServiceLocale() function and the string is not found in the first language,
it will be searched for in the second, the third, etc. If the string is not found in any of the
listed locales, the string service will return “<scope:index> Message string is unavailable”.

Return Values

LDRF_ERR_PARAM A parameter isn’t valid (e.g., the id is NULL).

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

38 LONMARK Resource File API Reference Guide

LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_FILE_TYPE The file type requested isn’t valid.

LDRF_ERR_STALE The catalog can't be searched, it needs a refresh.

LDRF_ERR_NOT_RESOURCE The file header of the file was not correct for a resource file (if
it was a resource file that was requested).

LDRF_ERR_FMT_VERSION The major format version is not supported.

LDRF_ERR_VERSION The data content major-version is lower than the minimum.

LDRF_ERR_CRC The header or data CRC check did not pass.

LDRF_ERR_NOT_FOUND No resource with that index was found.

LDRF_ERR_TRUNC Resource string was truncated to fit buffer.

LDRF_ERR_INCOMPLETE The file has not been completely created.

LDRF_ERR_WRITE Write error, or disk is full.

LdrfStopStringService

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfStopStringService(TServiceID id)

COM Interface Prototype

LdrfLangResource.StopStringService(long id, long *returnCode)

Purpose

This function terminates the string service and closes all cached files.

Return Values

LDRF_ERR_PARAM A parameter isn’t valid (the id is NULL).

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_STRING_SERVICE The service ID provided is not a valid service.

LDRF_ERR_FILE_INFO The file info structure content was not valid.

Type File Functions
Type files contain type information for network variable types (NVT), configuration property
types (CPT), and enumerations. You can use the type file functions for general operations
with type files and allow to manage the resource types. See the Type Tree Functions in the
next section for access to the fundamental data type definitions behind NVT or CPT.

LONMARK Resource File API Reference Guide 39

Type File Access Functions

LdrfGetTypeFileInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetTypeFileInfo(PLdrfFileInfo pInfo,
 PUShort pResDep0, PUShort pResDep1,
 PUShort pResDep2, PUShort pResDep3,
 PUShort pResDep4, PUShort pResDep5,
 PUShort pResDep6,
 PUShort pTypDep0, PUShort pTypDep1,
 PUShort pTypDep2, PUShort pTypDep3,
 PUShort pTypDep4, PUShort pTypDep5,
 PUShort pTypdep6,
 PUShort pNumNVTs, PUShort pNumCPTs,
 PUShort pNumEnumSets)

COM Interface Prototype

LdrfTypes.GetTypeFileInfo(long pInfo,
 long *pResDep0, long *pResDep1, long *pResDep2,
 long *pResDep3, long *pResDep4, long *pResDep5,
 long *pResDep6,
 long *pTypDep0, long *pTypDep1, long *pTypDep2,
 long *pTypDep3, long *pTypDep4, long *pTypDep5,
 long *pTypDep6, long *pNumNVTs, long *pNumCPTs,
 long *pNumEnumSets, long *returnCode)

Purpose

This function is called retrieves information specific to the open type file. The pInfo
argument specifies the open type file. All other arguments to this function are pointers to
output parameters, and a NULL value may be used if the caller is not interested in a
particular detail.

The function reports the number of NVT, CPT, and enumerations defined in the type file.
The function also supports two seven-part dependency codes. The dependency codes are not
typically used; callers to this API typically specify the NULL pointer for these arguments.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE The file has not been completely created.

40 LONMARK Resource File API Reference Guide

LdrfSetTypeFileInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetTypeFileInfo(PLdrfFileInfo pInfo,
 TUShort resDep0, TUShort resDep1,
 TUShort resDep2, TUShort resDep3,
 TUShort resDep4, TUShort resDep5,
 TUShort resDep6,
 TUShort typDep0, TUShort typDep1,
 TUShort typDep2, TUShort typDep3,
 TUShort typDep4, TUShort typDep5,
 TUShort typdep6)

COM Interface Prototype

LdrfTypes.SetTypeFileInfo(long pInfo, long resDep0, long resDep1,
 long resDep2, long resDep3, long resDep4,
 long resDep5, long resDep6,
 long typDep0, long typDep1, long typDep2,
 long typDep3, long typDep4, long typDep5,
 long typDep6, long *returnCode)

Purpose

This function sets dependency information specific to the open type file. The pInfo
parameter is supplied, along with the dependency data.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

Enum Set Access Functions for a Type File

Enumerations are signed 8-bit enumerated value sets with a value range of -128…+127.
Each enumeration defines a tag and a header file name a set of members. Each member
defines a name/value pair. Optional resource strings may be supplied for additional
information.

When working with an enumeration, you must select the enumeration with the
LdrfSelectEnumSet() function first. You can then access the enumeration and its
members until you select a different enumeration.

LONMARK Resource File API Reference Guide 41

LdrfChangeSelectedEnumSetFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfChangeSelectedEnumSetFile (PLdrfFileInfo pInfo,
 LPSTR file);
COM Interface Prototype

LdrfGeneral2.ChangeSelectedEnumSetFile (long pInfo,
 BSTR file,
 long *returnCode);

Purpose

This function updates the selected enumeration's file name string and database key entry.
This file name relates to the name of the C language header file which provides the C-
language enumeration for this type. The enumeration set will remain selected.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No enumeration set with that index was found.

LDRF_ERR_DUPLICATE An attempt was made to change the file name string to a
duplicate of another enum set. The DRF API will attempt to
restore the file name database key.

LdrfChangeSelectedEnumSetTag

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfChangeSelectedEnumSetTag (PLdrfFileInfo pInfo,
 LPSTR tag);

COM Interface Prototype

LdrfGeneral2.ChangeSelectedEnumSetTag (long pInfo,
 BSTR tag,
 long *returnCode);

Purpose

This function updates the selected enumeration's tag string and database key entry. The
enumeration set will remain selected.

42 LONMARK Resource File API Reference Guide

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No enum set with that index was found.

LDRF_ERR_DUPLICATE An attempt was made to change the tag string to a duplicate
of another enum set. The LONMARK Resource File API will
attempt to restore the tag database key.

LdrfDeleteEnumMemberByIndex

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfTypes.DeleteEnumMemberByIndex (PLdrfFileInfo pInfo,
 TUShort index);

COM Interface Prototype

LdrfGeneral2.DeleteEnumMemberByIndex (long pInfo,
 long index,
 long *returnCode);

Purpose

This function deletes the indexed member of the selected enumeration set. The enumeration
set will remain selected. All members with larger indices than the member being deleted
will have their indices adjusted downwards (i.e., decremented) by 1. The index is 1-based
(meaning an enumeration set with one single member will have a valid index of '1', and only
that value).

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No enum set with that index was found.

LdrfSelectEnumSet

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSelectEnumSet(PLdrfFileInfo pInfo, TUShort index,
 LPSTR pTag, PUShort pTagLen,
 LPSTR pFile, PUShort pFileLen)

LONMARK Resource File API Reference Guide 43

COM Interface Prototype

LdrfMiscFns1.SelectEnumSet(long pInfo, long index, BSTR *pTag,
 BSTR *pFile, long *returnCode)

Purpose

This selects an enumeration set in an open type file. The pInfo parameter is supplied, along
with the index of the enumeration set. This function does not return any enumeration data;
it just selects which enumeration set to use in certain future accesses through other
functions, and this selection is retained in the info structure. The function does return the
enumeration tag and enumeration file name if desired.

Return Values
LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_SYS System error, for example due to exceeding available file

handles, disk space, or memory.
LDRF_ERR_NOT_FOUND No enumeration set with that index was found.
LDRF_ERR_TRUNC The string was truncated to fit the buffer.
LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This

error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfSelectEnumSetByTag

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSelectEnumSetByTag(PLdrfFileInfo pInfo, LPCSTR tag,
 PUShort pIndex)

COM Interface Prototype

LdrfTypes.SelectEnumSetByTag(long pInfo, BSTR tag, long *pIndex,
 long *returnCode)

Purpose

This function selects an enumeration in an open type file. The pInfo parameter is supplied,
along with a string pointer to the tag of the enumeration. This function does not return any
enumeration data, it just selects which enumeration to use in certain future accesses (see
below), and this selection is retained in the info structure. The index of the enumeration is
returned if desired.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No enumeration with that index was found.

44 LONMARK Resource File API Reference Guide

LdrfSelectEnumSetByFile

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSelectEnumSetByFile(PLdrfFileInfo pInfo, LPCSTR file,
 PUShort pIndex)

COM Interface Prototype

LdrfTypes.SelectEnumSetByFile(long pInfo, BSTR file, long *pIndex,
 long *returnCode)

Purpose

This function selects an enumeration in an open type file. The pInfo parameter is supplied,
along with a string pointer to the filename key of the enumeration. This function does not
return any enumeration data, it just selects which enumeration to use in certain future
accesses (see below), and this selection is retained in the info structure. The index of the
enumeration is returned if desired.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No enumeration with that index was found.

LdrfSelectNewEnumSet

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSelectNewEnumSet(PLdrfFileInfo pInfo,
 LPCSTR tag, LPCSTR file, PUShort pIndex)

COM Interface Prototype

LdrfTypes.SelectNewEnumSet(long pInfo, BSTR tag, BSTR file,
 long *pIndex, long *returnCode)

Purpose

This function creates and selects a new enumeration in an open type file. The pInfo
parameter is supplied, along with a string pointer to the enumeration tag and a string
pointer to the filename key of the enumeration. This call creates the new enumeration and
selects it for future operations, and this selection is retained in the info structure. The new
enumeration is created using the next available index. That index is returned in the pIndex
reference parameter. Both the tag key and the filename key must be unique in the file. The
new enumeration is initially created with no members.

LONMARK Resource File API Reference Guide 45

If an enumeration set is deleted, leaving an empty record, this function will search for an
available empty enumeration set record before creating a new record at the end of the file.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_DUPLICATE One of the keys is already in the file.

LDRF_ERR_FULL File is full, no more indices can be added (if editing).

LdrfDeleteEnumSet

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfDeleteEnumSet(PLdrfFileInfo pInfo, TUShort Index)

COM Interface Prototype

LdrfTypes.DeleteEnumSet(long pInfo, long index, long *returnCode)

Purpose

This function deletes an enumeration set. Deleted enumerations do not consume any file
data space. They only have NULL entries in the resource key-access directories.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_FMT_VERSION The function was called on a pre-version 4 type file.

LdrfGetEnumMember

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetEnumMember(PLdrfFileInfo pInfo, TByte value,
 LPSTR pString, PUShort pLength,
 PUByte pResSel, PULong pResIndex)

46 LONMARK Resource File API Reference Guide

COM Interface Prototype

LdrfTypes.GetEnumMember(long pInfo, long value,
 BSTR *pString, long *pResSel, long *pResIndex,
 long *returnCode)

Purpose

This function retrieves an enumeration member from the previously selected enumeration in
an open type file. The pInfo parameter for the file is supplied (for the C language API only),
along with the key for the member of the enumeration. The member key is identical to the
value. Since the enumeration members each have a programmatic string and a resource
string index, both are returned. The caller must allocate a buffer to hold the string, and pass
the length of the buffer through the length reference parameter (for the C language API
only), which will be altered to indicate the length actually read.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_SELECTED No selected enumeration.

LDRF_ERR_NOT_FOUND No enumeration member with that value was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LdrfGetEnumValue

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetEnumValue(PLdrfFileInfo pInfo, LPCSTR string,
 PByte pValue)

COM Interface Prototype

LdrfTypes.GetEnumValue(long pInfo, BSTR string,
 long *pValue, long *returnCode)

Purpose

This function retrieves an enumeration member's value key using the string supplied from
the previously selected enumeration in an open type file. The string may be either a resource
string or the programmatic enumeration member name—both will be searched. The value
reference parameter will be filled in if the search is successful.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_SELECTED No selected enumeration.

LDRF_ERR_NOT_FOUND No enumeration member with that value was found.

LONMARK Resource File API Reference Guide 47

LdrfGetEnumMemberCount

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetEnumMemberCount(PLdrfFileInfo pInfo, PUShort pNumMembers)

COM Interface Prototype

LdrfGeneral2.GetEnumMemberCount(long pInfo, long *pNumMembers
 long *returnCode)

Purpose

This function retrieves the number of enumeration members in the specified enumeration
set.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_SELECTED No selected enumeration.

LDRF_ERR_NOT_FOUND No enumeration member with that value was found.

LdrfGetEnumMemberByIndex

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetEnumMemberByIndex(PLdrfFileInfo pInfo, TUShort index,
 PByte pValue, LPSTR pString,
 PUShort pLength, PUByte pResScope,
 PULong pResIndex)

COM Interface Prototype

LdrfGeneral2.GetEnumMemberByIndex(long pInfo, long index,
 long *pValue, BSTR *pString,
 long *pResScope,
 long *pResIndex, long *returnCode)

Purpose

This function gets the enumeration set member with the specified index.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_SELECTED No selected enumeration.

LDRF_ERR_NOT_FOUND No enumeration member with that value was found.

48 LONMARK Resource File API Reference Guide

LdrfSetEnumMember

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetEnumMember(PLdrfFileInfo pInfo, TByte value,
 LPCSTR string, TUByte resSel, TULong resIndex)

COM Interface Prototype

LdrfTypes.SetEnumMember(long pInfo, long value, BSTR string,
 long resSel, long resIndex, long *returnCode)

Purpose

This function adds or modifies an enumeration member in the currently selected
enumeration.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_SELECTED No selected enumeration.

LdrfValidateEnumSet

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfValidateEnumSet(PLdrfFileInfo pInfo, TUShort Index)

COM Interface Prototype

LdrfMiscFns1.ValidateEnumSet(long pInfo, long index, long *returnCode)

Purpose

This function returnw a value that indicates the status of this enumeration set. See Return
Values for more information.

Return Values

LDRF_ERR_PARAM Incorrect parameters supplied.

LDRF_ERR_NOT_FOUND The specified enumeration set was not found.

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NONE The enumeration set was found and is not empty.

LONMARK Resource File API Reference Guide 49

LDRF_ERR_EMPTY_RECORD The enumeration set is an empty record (i.e. it was
deleted). This error code is only returned if the
LdrfEnableEmptyEntries() function was called on the
type file.

NVT Access Functions for a Type File

The functions described in this section manage network variable types (NVTs), including
NVT properties such as type name and descriptive strings. You can explore the fundamental
data type using the type tree functions, discussed later in this document.

LdrfGetNVT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNVT(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree *ppTypeTree))

COM Interface Prototype

LdrfTypes.GetNVT(long pInfo, long index,
 long *ppTypeTree, long *returnCode)

Purpose

This function retrieves a network variable type by index from an open type file. The pInfo
parameter for the file is supplied, along with the index for the network variable type. The
type description is read in by the routine, and is returned in the ppTypeTree reference
parameter. The type tree contains the programmatic name string for the type and three
resource string indices for name, comment, and units. You must call the
LdrfFreeTypeTree() function to free the type tree when your application is done with it. If
extended SNVT-ID support is not enabled, this function hides standard network variable
types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No network variable type with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

50 LONMARK Resource File API Reference Guide

LdrfGetNVTEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNVTEx(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree *ppTypeTree, PUSHORT pFlags))

Purpose

This function is identical to the LdrfGetNVT() function, with the addition of a new pFlags
parameter. The pFlags parameter is reserved for future use and the value is set to zero by
the LdrfGetNVTEx() function.

This function retrieves a network variable type by index from an open type file. The pInfo
parameter for the file is supplied, along with the index for the network variable type. The
type description is read in by the routine, and is returned in the ppTypeTree reference
parameter. The type tree contains the programmatic name string for the type and three
resource string indices for name, comment, and units. Your application must call the
LdrfFreeTypeTree() function to free the type tree when your application is done with it. If
extended SNVT-ID support is not enabled, this function hides standard network variable
types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No network variable type with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfGetNVTByName

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNVTByName(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PLdrfTypeTree *ppTypeTree)

COM Interface Prototype

LdrfTypes.GetNVTByName(long pInfo, BSTR name, long *pIndex,
 long *ppTypeTree, long *returnCode)

LONMARK Resource File API Reference Guide 51

Purpose

This function retrieves a network variable type from an open type file using the
programmatic name key string for the type. The pInfo parameter for the file is supplied,
along with a pointer to the name string for the network variable type. The index of the
network variable type is returned. The type description is read in by the function, and is
returned in the ppTypeTree reference parameter. The type tree contains the programmatic
name string for the type and three resource string indices for name, comment, and units.
Your application must call the LdrfFreeTypeTree() function to free the type tree when
your application is done with it. If extended SNVT-ID support is not enabled, this function
hides standard network variable types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No network variable type with that name was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfGetNVTByNameEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNVTByName(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PLdrfTypeTree *ppTypeTree, PUShort pFlags)

Purpose

This function is identical to the LdrfGetNVTByName() function, with the addition of a new
pFlags parameter. The pFlags parameter is reserved for future use and the value is set to
zero by the LdrfGetNVTByNameEx() function.

This function retrieves a network variable type from an open type file using the
programmatic name key string for the type. The pInfo parameter for the file is supplied,
along with a pointer to the name string for the network variable type. The index of the
network variable type is returned. The type description is read in by the function, and is
returned in the ppTypeTree reference parameter. The type tree contains the programmatic
name string for the type and three resource string indices for name, comment, and units.
Your application must call the LdrfFreeTypeTree() function to free the type tree when
your application is done with it. If extended SNVT-ID support is not enabled, this function
hides standard network variable types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No network variable type with that name was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

52 LONMARK Resource File API Reference Guide

LdrfLookupTypeNameString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfLookupTypeNameString(LPCSTR pTypeNameString,
 PNVTTYPE pNvtType)

COM Interface Prototype

LdrfMiscFns1.GetLookupNameString(BSTR*pString, long *pNvtType,
 long *returnCode)

Purpose

This function performs a case-insensitive search of the TNVTType enumeration for the
provided string. If a match is found, the corresponding network variable type is returned.

See LdrfGetTypeNameString() for the inverse operation.

Return Values

LDRF_ERR_NOT_FOUND The string was not found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfSetNVT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetNVT(PLdrfFileInfo pInfo,
 TUShort index, PLdrfTypeTree pTypeTree)

COM Interface Prototype

LdrfTypes.SetNVT(long pInfo, long index, long pTypeTree,
 long *returnCode)

Purpose

This function adds or modifies a network variable type in a type file that has already been
opened for editing. The index must be supplied, along with a pointer to the new type tree.
The type tree contains the programmatic name string for the type and three resource string
indices for name, comment, and units. The index is used as the key for the network variable
type record to change. The name string key is checked to make sure it is not a duplicate
conflicting with another record. Type trees must be constructed using the type tree functions
described later in this document. Your application must call the LdrfFreeTypeTree()
function to free the type trees when your application is done with them.

LONMARK Resource File API Reference Guide 53

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No network variable type with that index was found, or if
adding, the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another network variable
type in the file.

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the specified data
type. The NVT_TYPE_UNSIGNED_QUAD and
NVT_TYPE_DOUBLE_FLOAT data types require version 5
or later. The NVT_TYPE_SIGNED_INT64 and
NVT_TYPE_UNSIGNED_INT64 data types require version
6 or later.

LdrfSetNVTEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetNVTEx(PLdrfFileInfo pInfo,
 TUShort index, PLdrfTypeTree pTypeTree, TUShort flags)

Purpose

This function is identical to the LdrfSetNVT() function, with the addition of a new flags
parameter. The flags parameter is reserved for future use and the value must be set to zero
when calling the LdrfSetNVTEx() function.

This function adds or modifies a network variable type in a type file that has already been
opened for editing. The index must be supplied, along with a pointer to the new type tree.
The type tree contains the programmatic name string for the type and three resource string
indices for name, comment, and units. The index is used as the key for the network variable
type record to change. The name string key is checked to make sure it is not a duplicate
conflicting with another record. Type trees must be constructed using the type tree functions
described later in this document. Your application must call the LdrfFreeTypeTree()
function to free the type trees when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

54 LONMARK Resource File API Reference Guide

LDRF_ERR_NOT_FOUND No network variable type with that index was found, or if
adding, the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another network variable
type in the file.

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the specified data
type. The NVT_TYPE_UNSIGNED_QUAD and
NVT_TYPE_DOUBLE_FLOAT data types require version 5
or later. The NVT_TYPE_SIGNED_INT64 and
NVT_TYPE_UNSIGNED_INT64 data types require version
6 or later.

LdrfSetNVTObsolete

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetNVTObsolete(PLdrfFileInfo pInfo, TUShort index)

COM Interface Prototype

LdrfGeneral2.SetNVTObsolete(long pInfo, long index, long *returnCode)

Purpose

This function marks the specified network variable type as obsolete. Marking a type as
obsolete does not affect the processing of the file. It is up to the calling application to
interpret the obsolete mark. The obsolete mark is cleared when the network variable type is
edited. To edit a network variable type and leave the obsolete mark intact, you must check
for the mark using LdrfGetNVTObsolete() before making any changes and call this
function after you are done editing.

You cannot use obsolete types within new definitions, but existing definitions may continue
referencing obsolete types.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No network variable type with that index was found, or if
adding, the new index is not correct (must be contiguous).

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the obsolete
mark. The obsolete mark is supported in version 3 and
later.

LONMARK Resource File API Reference Guide 55

LdrfGetNVTObsolete

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNVTObsolete(PLdrfFileInfo pInfo, TUShort index, PboolByte
 pObsolete)

COM Interface Prototype

LdrfGeneral2.GetNVTObsolete(long pInfo, long index,
 long *pObsolete, long *returnCode)

Purpose

This function checks for the obsolete flag on the specified network variable type. Marking a
type as obsolete does not affect the processing of the file. It is up to the calling application to
interpret the obsolete mark. This function will return FALSE if called on a resource file that
does not support the obsolete mark; no error will be returned.

You cannot use obsolete types within new definitions, but existing definitions may continue
referencing obsolete types. If extended SNVT-ID support is not enabled, this function will
hide standard network variable types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No network variable type with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfFindEmptyNVT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFindEmptyNVT(PLdrfFileInfo pInfo, PUShort pIndex)

COM Interface Prototype

LdrfMscFns1.FindEmptyNVT(long pInfo, long *pIndex,
 long *returnCode)

Purpose

This function returns the first empty network variable type index. If there are no empty
network variable type records, this function returns n+1, where n is the number of network
variable type records in the file.

Empty records may be a result from marking a previously exising record as deleted, and
having purged the type file. This function allows reclaiming the index that has been freed.

56 LONMARK Resource File API Reference Guide

The function supports the traditional SNVT-ID range 1…250 unless the extended SNVT-ID
support is enabled.

Return Values

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NOT_FOUND No empty record index is available (only occurs if file is
full).

LdrfDeleteNVT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfDeleteNVT(PLdrfFileInfo pInfo, TUShort index)

COM Interface Prototype

LdrfMiscFns1.DeleteNVT(long pInfo, long index, long *returnCode)

Purpose

This function deletes a network variable type. Deleted resources do not consume any file
data space. They only have NULL entries in the resource key-access directories.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No network variable type with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LDRF_ERR_FMT_VERSION The function was called on a pre-version 4 type file.

LdrfValidateNVT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfValidateNVT(PLdrfFileInfo pInfo, TUShort Index)

COM Interface Prototype

LdrfMiscFns1.ValidateNVT(long pInfo, long index, long *returnCode)

LONMARK Resource File API Reference Guide 57

Purpose

This function returns a value that indicates the status of the specified network variable type.
See Return Values for more information. If extended SNVT-ID support is not enabled, this
function hides standard network variable types whose ID exceeds 250.

Return Values

LDRF_ERR_PARAM Incorrect parameters supplied.

LDRF_ERR_NOT_FOUND The specified network variable type was not found.

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NONE The network variable type was found and is not empty.

LDRF_ERR_EMPTY_RECORD The network variable type is an empty record (i.e. it was
deleted). This error code will only be returned if the
LdrfEnableEmptyEntries() function was called on the
type file.

CPT Access Functions for a Type File

The functions discussed in this section manage configuration property types, including CPT
properties such as type name, descriptive strings, and similar aspects. The fundamental
data type can be explored using the Type Tree Functions, discussed later in this document.

LdrfGetCPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPT(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree *ppTypeTree, PBool pInheritable,
 PUByteArray *ppMin, PUByteArray *ppMax,
 PUByteArray *ppInit, PUShort pByteArrayLen)

COM Interface Prototype

LdrfTypes.GetCPT(long pInfo, long index, long *ppTypeTree,
 long *pInheritable, BSTR *ppMin, BSTR *ppMax,
 BSTR *ppInit, long *returnCode)

Purpose

This function retrieves a configuration property type from an open type file. The pInfo
parameter for the file is supplied, along with the index for the configuration property type.
Each configuration property type has a programmatic string and several resource string
indices, all are returned. Three byte arrays are returned, representing the default min, max,
and initial values for the configuration property type. The type description is read in by the
function, and is returned in the ppTypeTree reference parameter. Your application must
call the LdrfFreeTypeTree() function to free the type tree when done with it. Your
application must call the LdrfFreeByteArray() function to free each of the min, max, and
initial value arrays when your application is done with them.

58 LONMARK Resource File API Reference Guide

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfGetCPTEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPTEx(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree *ppTypeTree, PBool pInheritable,
 PUByteArray *ppMin, PUByteArray *ppMax,
 PUByteArray *ppInit, PUByteArray *ppInvalid,
 PUShort pByteArrayLen)

COM Interface Prototype

LdrfTypes.GetCPTEx(long pInfo, long index, long *ppTypeTree,
 long *pInheritable, BSTR *ppMin, BSTR *ppMax,
 BSTR *ppInit, BSTR *ppInvalid, long *returnCode)

Purpose

This function is identical to the LdrfGetCpt() function except that it returns an additional
reference parameter for a byte array containing the default invalid value for the
configuration property type.

This function retrieves a configuration property type from an open type file. The pInfo
parameter for the file is supplied, along with the index for the configuration property type.
Each configuration property type has a programmatic string and several resource string
indices, all are returned. Four byte arrays are returned, representing the default min, max,
initial, and invalid values for the configuration property type. The type description is read in
by the function, and is returned in the ppTypeTree reference parameter. You must call the
LdrfFreeTypeTree() function to free the type tree when your application is done with it.
Your application must call the LdrfFreeByteArray() function to free each of the min, max,
initial, and invalid value arrays when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found.

LONMARK Resource File API Reference Guide 59

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfGetCPTEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPTEx(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree *ppTypeTree, PBool pInheritable,
 PUByteArray *ppMin, PUByteArray *ppMax,
 PUByteArray *ppInit, PUByteArray *ppInvalid,
 PUShort pByteArrayLen, PUShort pFlags)

Purpose

This function is identical to the LdrfGetCptEx() function, with the addition of a new
pFlags parameter. The pFlags parameter is reserved for future use and the value is set to
zero by the LdrfGetCptEx2() function.

This function retrieves a configuration property type from an open type file. The pInfo
parameter for the file is supplied, along with the index for the configuration property type.
Each configuration property type has a programmatic string and several resource string
indices, all are returned. Four byte arrays are returned, representing the default min, max,
initial, and invalid values for the configuration property type. The type description is read in
by the function, and is returned in the ppTypeTree reference parameter. You must call the
LdrfFreeTypeTree() function to free the type tree when your application is done with it.
Your application must call the LdrfFreeByteArray() function to free each of the min, max,
initial, and invalid value arrays when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

60 LONMARK Resource File API Reference Guide

LdrfGetCPTByName

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPTByName(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PLdrfTypeTree *ppTypeTree,
 PBool pInheritable,
 PUByteArray *ppMin, PUByteArray *ppMax,
 PUByteArray *ppInit, PUShort pByteArrayLen)

COM Interface Prototype

LdrfTypes.GetCPTByName(long pInfo, BSTR name, long *pIndex,
 long *ppTypeTree, long *pInheritable,
 BSTR *ppMin, BSTR *ppMax,
 BSTR *ppInit, long *returnCode)

Purpose

This retrieves a configuration property type from an open type file using the programmatic
name key string for the type. The pInfo parameter for the file is supplied, along with a
pointer to the name string for the configuration property type. The index of the
configuration property type is returned. Each configuration property type has several
resource string indices, all are returned. Three byte arrays are returned, representing the
default min, max, and initial values for the configuration property type. The type description
is read in by the function, and is returned in the ppTypeTree reference parameter. You
must call the LdrfFreeTypeTree() function to free the type tree when your application is
done with it. Your application must call the LdrfFreeByteArray() function to free each of
the min, max, and initial value arrays when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that name was found.

LdrfGetCPTByNameEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPTByNameEx(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PLdrfTypeTree *ppTypeTree,
 PBool pInheritable,
 PUByteArray *ppMin, PUByteArray *ppMax,
 PUByteArray *ppInit, PUByteArray *ppInvalid ,
 PUShort pByteArrayLen)

LONMARK Resource File API Reference Guide 61

COM Interface Prototype

LdrfTypes.GetCPTByNameEx(long pInfo, BSTR name, long *pIndex,
 long *ppTypeTree, long *pInheritable,
 BSTR *ppMin, BSTR *ppMax,
 BSTR *ppInit, BSTR *ppInvalid, long *returnCode)

Purpose

This function is identical to the LdrfGetCPTByName() function except that it returns an
additional reference parameter for a byte array containing the default invalid value for the
configuration property type.

This function retrieves a configuration property type from an open type file using the
programmatic name key string for the type. The pInfo parameter for the file is supplied,
along with a pointer to the name string for the configuration property type. The index of the
configuration property type is returned. Each configuration property type has several
resource string indices, all are returned. Four byte arrays are returned, representing the
default min, max, initial, and invalid values for the configuration property type. The type
description is read in by the function, and is returned in the ppTypeTree reference
parameter. You must call the LdrfFreeTypeTree() function to free the type tree when your
application is done with it. Your application must call the LdrfFreeByteArray() function
to free each of the min, max, initial, and invalid value arrays when your application is done
with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that name was found.

LdrfGetCPTByNameEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPTByNameEx2(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PLdrfTypeTree *ppTypeTree,
 PBool pInheritable,
 PUByteArray *ppMin, PUByteArray *ppMax,
 PUByteArray *ppInit, PUByteArray *ppInvalid ,
 PUShort pByteArrayLen, PUShort pFlags)

Purpose

This function is identical to the LdrfGetCptByNameEx() function, with the addition of a
new pFlags parameter. The pFlags parameter is reserved for future use and the value is
set to zero by the LdrfGetCptByNameEx2() function.

This function retrieves a configuration property type from an open type file using the
programmatic name key string for the type. The pInfo parameter for the file is supplied,

62 LONMARK Resource File API Reference Guide

along with a pointer to the name string for the configuration property type. The index of the
configuration property type is returned. Each configuration property type has several
resource string indices, all are returned. Four byte arrays are returned, representing the
default min, max, initial, and invalid values for the configuration property type. The type
description is read in by the function, and is returned in the ppTypeTree reference
parameter. You must call the LdrfFreeTypeTree() function to free the type tree when your
application is done with it. Your application must call the LdrfFreeByteArray() function
to free each of the min, max, initial, and invalid value arrays when your application is done
with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that name was found.

LdrfFreeByteArray

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFreeByteArray(PUByteArray pByteArray)

Purpose

This function frees a byte array that was allocated by LdrfGetCPT(), LdrfGetCPTEx(),
LdrfGetCPTEx2(), LdrfGetCPTByName(),LdrfGetCPTByNameEx(), or
LdrfGetCPTByNameEx2().

Return Values

There are no error codes returned by this function.

LdrfSetCPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetCPT(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree pTypeTree, TBool inheritable,
 PUByteArray pMin, PUByteArray pMax,
 PUByteArray pInit, TUShort byteArrayLen)

COM Interface Prototype

LdrfTypes.SetCPT(long pInfo, long index,
 long pTypeTree, long inheritable,
 BSTR pMin, BSTR pMax, BSTR pInit, long *returnCode)

LONMARK Resource File API Reference Guide 63

Purpose

This function adds or modifies a configuration property type in a type file that has been
opened for editing. The type tree contains the programmatic name string for the type and
three resource string indices for name, comment, and units. Pointers to new byte arrays for
min, max, and init values must be supplied. The index is used as the key for the
configuration property type record to change. The name key is checked to make sure it is not
a duplicate conflicting with another record. Type trees must be constructed using the type
tree functions described later in this document. You must call the LdrfFreeTypeTree()
function to free type trees when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found, or
if adding, the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property type in the file.

LDRF_ERR_PARAM An incorrect parameter was supplied.

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the specified data
type. The NVT_TYPE_UNSIGNED_QUAD and
NVT_TYPE_DOUBLE_FLOAT data types require version 5
or later. The NVT_TYPE_SIGNED_INT64 and
NVT_TYPE_UNSIGNED_INT64 data types require version
6 or later.

LdrfSetCPTEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetCPTEx(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree pTypeTree, TBool inheritable,
 PUByteArray pMin, PUByteArray pMax,
 PUByteArray pInit, PUByteArray pInvalid,
 TUShort byteArrayLen)

COM Interface Prototype

LdrfTypes.SetCPTEx(long pInfo, long index,
 long pTypeTree, long inheritable,
 BSTR pMin, BSTR pMax, BSTR pInit, BSTR pInvalid,
 long *returnCode)

64 LONMARK Resource File API Reference Guide

Purpose

This function is identical to the LdrfSetCpt() function except that it takes an additional
pointer to a byte array containing the default invalid value for the configuration property
type.

This function adds or modifies a configuration property type in a type file that has been
opened for editing. The type tree contains the programmatic name string for the type and
three resource string indices for name, comment, and units. Pointers to new byte arrays for
min, max, init, and invalid values must be supplied. The index is used as the key for the
configuration property type record to change. The name key is checked to make sure it is not
a duplicate conflicting with another record. Type trees must be constructed using the type
tree functions described later in this document. You must call the LdrfFreeTypeTree()
function to free type trees when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found, or
if adding, the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property type in the file.

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the specified data
type. The NVT_TYPE_UNSIGNED_QUAD and
NVT_TYPE_DOUBLE_FLOAT data types require version 5
or later. The NVT_TYPE_SIGNED_INT64 and
NVT_TYPE_UNSIGNED_INT64 data types require version
6 or later.

LdrfSetCPTEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetCPTEx2(PLdrfFileInfo pInfo, TUShort index,
 PLdrfTypeTree pTypeTree, TBool inheritable,
 PUByteArray pMin, PUByteArray pMax,
 PUByteArray pInit, PUByteArray pInvalid,
 TUShort byteArrayLen, TUShort flags)

Purpose

This function is identical to the LdrfSetCPTEx() function, with the addition of a new flags
parameter. The flags parameter is reserved for future use and the value must be set to zero
when calling the LdrfSetCPTEx2() function.

LONMARK Resource File API Reference Guide 65

This function adds or modifies a configuration property type in a type file that has been
opened for editing. The type tree contains the programmatic name string for the type and
three resource string indices for name, comment, and units. Pointers to new byte arrays for
min, max, init, and invalid values must be supplied. The index is used as the key for the
configuration property type record to change. The name key is checked to make sure it is not
a duplicate conflicting with another record. Type trees must be constructed using the type
tree functions described later in this document. You must call the LdrfFreeTypeTree()
function to free type trees when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found, or
if adding, the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property type in the file.

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the specified data
type. The NVT_TYPE_UNSIGNED_QUAD and
NVT_TYPE_DOUBLE_FLOAT data types require version 5
or later. The NVT_TYPE_SIGNED_INT64 and
NVT_TYPE_UNSIGNED_INT64 data types require version
6 or later.

LdrfSetCPTObsolete

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetCPTObsolete(PLdrfFileInfo pInfo, TUShort index)

COM Interface Prototype

LdrfGeneral2.SetCPTObsolete(long pInfo, long index, long *returnCode)

Purpose

This function marks the specified configuration property type as obsolete. Marking a type as
obsolete does not affect the processing of the file. It is up to the calling application to
interpret the obsolete mark. To edit a configuration property type and leave the obsolete
mark intact, you must check for the mark using LdrfGetCPTObsolete() before making any
changes and call this function after you are done editing.

You cannot use obsolete types with new definitions, but you may continue using existing
definitions that reference obsolete types.

66 LONMARK Resource File API Reference Guide

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found, or
if adding, the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property type in the file.

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LDRF_ERR_FMT_VERSION The resource file format does not support the obsolete mark.
The obsolete mark is supported in version 3 and later.

LdrfGetCPTObsolete

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetCPTObsolete(PLdrfFileInfo pInfo, TUShort index, PboolByte
 pObsolete)

COM Interface Prototype

LdrfGeneral2.GetCPTObsolete(long pInfo, long index,
 long *pObsolete, long *returnCode)

Purpose

This function checks for the obsolete flag on the specified configuration property type.
Marking a type as obsolete does not affect the processing of the file. It is up to the calling
application to interpret the obsolete mark. This function will return FALSE if called on a
resource file that does not support the obsolete mark; no error will be returned.

You cannot use obsolete types with new definitions, but you may continue using existing
definitions that reference obsolete types.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LONMARK Resource File API Reference Guide 67

LdrfFindEmptyCPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFindEmptyCPT(PLdrfFileInfo pInfo, PUShort pIndex)

COM Interface Prototype

LdrfMiscFns1.FindEmptyCPT(long pInfo, long *pIndex,
 long *returnCode)

Purpose

This function returns the first empty configuration property type index. If there are no
empty configuration property type records, this function returns n+1, where n is the number
of configuration property type records in the file.

Empty records may be a result from marking a previously exising record as deleted, and
having purged the type file. This function allows reclaiming the index that has been freed.

Return Values

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NOT_FOUND No empty record index is available (only occurs if file is
full).

LdrfDeleteCPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfDeleteCPT(PLdrfFileInfo pInfo, TUShort index)

COM Interface Prototype

LdrfMiscFns1.DeleteCPT(long pInfo, long index, long *returnCode)

Purpose

This function deletes a configuration property type. Deleted resources do not consume any
file data space. They only have NULL entries in the resource key-access directories.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No configuration property type with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_FMT_VERSION The function was called on a pre-version 4 type file.

68 LONMARK Resource File API Reference Guide

LdrfValidateCPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfValidateCPT(PLdrfFileInfo pInfo, TUShort Index)

COM Interface Prototype

LdrfMiscFns1.ValidateCPT(long pInfo, long index, long *returnCode)

Purpose

This function returns a value that indicates the status of the specified configuration property
type. See Return Values for more information.

Return Values

LDRF_ERR_PARAM Incorrect parameters supplied.

LDRF_ERR_NOT_FOUND The specified configuration property type was not found.

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NONE The configuration property type was found and is not
empty.

LDRF_ERR_EMPTY_RECORD The configuration property type is an empty record (i.e. it
was deleted). This error code will only be returned if the
LdrfEnableEmptyEntries() function was called on the
type file.

Type Tree Functions

Type trees represent the structure and definition of data types. The type tree for a scalar is
a single node. The type tree for a more complex data type, such as a union, struct, or array,
is a recursive type tree. You can use the functions described in this section to traverse
through an existing type tree, and to build a new type tree. Type tree nodes contain state
information permitting multiple calls to construct a type tree, or to scan a type tree.

LdrfFreeTypeTree

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFreeTypeTree(PLdrfTypeTree pTypeTree)

COM Interface Prototype

LdrfTypeTree.FreeTypeTree(long pTypeTree, long *returnCode)

LONMARK Resource File API Reference Guide 69

Purpose

This function frees a type tree linked structure that was allocated by the
LdrfGetNVT(),LdrfGetNVTEx(),LdrfGetNVTByName(),LdrfGetNVTByNameEx(),
LdrfGetCPT(), LdrfGetCPTEx(),LdrfGetCPTEx2(), LdrfGetCPTByName(),
LdrfGetCPTByNameEx(), or LdrfGetCPTByNameEx2() functions, and to free a type
tree created by other functions.

Return Values

LDRF_ERR_TYPE_TREE The type tree structure is invalid.

LdrfGetNextSupportedNVTType

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetNextSupportedNVTType(PLdrfFileInfo pInfo, TNVTType *pNvtType)

COM Interface Prototype

LdrfMiscFns1.GetNextSupportedNVTType(long pInfo, long *pNvtType,
 long *returnCode)

Purpose

This function returns the next base type supported by the specified type tree node for a
specified type file version. You can use this function to enumerate all supported
fundamental data types supported by a given type file. Fundamental data types are the
types that are used to define a network variable or configuration property type, and include
types such as NVT_TYPE_UNSIGNED_CHAR or NVT_TYPE_SIGNED_LONG, but also
include arrays, structures, unions, or references to other types. Extended data types are
included if the client has previously called LdrfExtendedDataTypeAware(). Only the
data types specified as supported are returned.

If pInfo is set to NULL, this function returns the next available network variable type,
irrespective of required version.

Return Values

LDRF_ERR_FILE_INFO The file info structure contents was not valid.

LDRF_ERR_NOT_FOUND The network variable type was not found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

70 LONMARK Resource File API Reference Guide

LdrfGetTypeNameString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetTypeNameString(TNVTType nvtType, LPSTR pTypeNameString,
 PUShort pLength)

COM Interface Prototype

LdrfMiscFns1.GetTypeNameString(long nvtType, BSTR*pString,
 long *returnCode)

Purpose

This function returns the name of the given base type in U.S. English (from the TNVTType
enumeration, defined in lcadrf.h). The names provided are similar to C type names, but
names such as “reference,” “bitfield”, or “array,” which are not C language type names, may
also be returned.

The type names provided by this function are designed for exposure in graphical user
interfaces, and similar applications.

See LdrfLookupTypeNameString() for the inverse operation.

Return Values

LDRF_ERR_PARAM The network variable type was not found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_TRUNC Name truncated (output buffer too short)

LdrfNewTypeTreeNode

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfNewTypeTreeNode(TNVTType newNodeType, LPCSTR name,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte resUntSel, TULong resUntIndex,
 PLdrfTypeTree *ppTypeTree)

COM Interface Prototype

LdrfTypeTree.NewTypeTreeNode(long newNodeType, BSTR name,
 long resNmSel, long resNmIndex,
 long resCmtSel, long resCmtIndex,
 long resUntSel, long resUntIndex,
 long *pTypeTree, long *returnCode)

LONMARK Resource File API Reference Guide 71

Purpose

This function adds a new node to an existing type tree, or creates a new type tree. The node
is added in the next position, for example, if the last thing done to the tree was to create an
array type, then a call to this function adds the definition for the array element. Type nodes
are added in depth first order. For example, if adding a structure's fields, and one of the
fields is itself a structure, the nested structure's fields must all be added before returning to
add fields to the outer structure. This is identical to the order of declarations in the C
language.

If the ppTypeTree parameter is a pointer to an existing type tree, the new node is added to
the specified tree. If the ppTypeTree parameter is NULL, a new type tree is created and
the new type tree pointer is returned via the first reference parameter. The other
parameters are a node type for the new node, a string pointer to a programmatic name for
the type element, and three optional resource string indices for language-dependent name,
comment, and units for the type element.

The type tree is marked as incomplete if the definition isn't finished. Once the node is added,
it must be set to proper values using one of the set details functions below. At that point, if
the tree is complete, an LDRF_ERR_NONE value will be returned.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a set details function was
expected, or the type is already complete.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE New node accepted; a call to a set function is required next.

LdrfResolveAllTypeTreeRefs

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfResolveAllTypeTreeRefs (PLdrfFileInfo pCatalogInfo,
 PUByteArray pProgID,
 PLdrfTypeTree pTypeTree,
 PUShort pTypeSize);

COM Interface Prototype

ILdrfGeneral2.ResolveAllTypeTreeRefs (long pCatalogInfo,
 BSTR progID,
 long pTypeTree,
 long * pTypeSize,
 long * returnCode);

72 LONMARK Resource File API Reference Guide

Purpose

This function resolves all references and grafts into the type tree, flattening the type tree.
This does not affect the contents of the type inside the resource file. The pTypeSize
parameter refers to the initial size of the type, not the current size. To get the current size of
the type, you must perform a comprehensive type tree walk using the LdrfScanTypeTree(),
LdrfReadTypeTreeNode(), and LdrfGetDetails() functions, as necessary.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_FILE_INFO The file info structure contents was not valid.

LDRF_ERR_NOT_FOUND One of the referenced types was not found.

LdrfSetScalarDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetScalarDetails(PLdrfTypeTree pTypeTree,
 TLong minValid, TLong maxValid,
 TShort scaleA, TShort scaleB, TShort scaleC)

COM Interface Prototype

LdrfTypeTree.SetScalarDetails(long pTypeTree,
 long minValid, long maxValid,
 long scaleA, long scaleB, long scaleC,
 long *returnCode)

Purpose

This function sets the details for an 8-, 16-, or 32-bit scalar node in a type tree (not including
an enum, bitfield, or float). The parameters are min and max validation constants, in raw
form, and scaling values. This type may complete the tree, depending on nested context.

If you are using 32-bit extended date types, this function will accept signed and unsigned
quad values. Unsigned long 32-bit values must be cast to signed long in the call to the
function. See the LdrfSetScalar64Details() function for setting details for 64-bit scalar
types.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LONMARK Resource File API Reference Guide 73

LdrfSetScalar64Details

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetScalar64Details(PLdrfTypeTree pTypeTree,
 __DRF_INT64 minValid, __DRF_INT64 maxValid,
 TShort scaleA, TShort scaleB, TShort scaleC)

COM Interface Prototype

LdrfScalar64Types.SetScalar64Details(long pTypeTree,
 hyper minValid, hyper maxValid,
 long scaleA, long scaleB, long scaleC,
 long *returnCode)

Purpose

This function sets the details for a 64-bit scalar node in a type tree (not including an enum,
bitfield, or float). The parameters are min and max validation constants, in raw form, and
scaling values. This type may complete the tree, depending on nested context.

This function will accept signed and unsigned 64-bit values. Unsigned 64-bit values must be
cast to signed 64-bit values in the call to the function. See the LdrfSetScalarDetails()
function for setting details for 8-, 16-, and 32-bit scalar types.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetScalarInvalidValue

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetScalarInvalidValue(PLdrfTypeTree pTypeTree,
 TLong invalidValue)

COM Interface Prototype

LdrfGeneral2.SetScalarInvalidValue(long pTypeTree,
 long invalidValue, long *returnCode)

74 LONMARK Resource File API Reference Guide

Purpose

This function sets the invalid value for the specified 8-, 16-, and 32-bit scalar. Invalid values
are supported in type files of version 3 or later. This function must be called with
LdrfSetScalarDetails(). See LdrfSetScalar64InvalidValue() for setting the invalid
value for 64-bit scalar types.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetScalar64InvalidValue

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetScalar64InvalidValue(PLdrfTypeTree pTypeTree,
 __DRF_INT64 invalidValue)

COM Interface Prototype

LdrfScalar64Types.SetScalar64InvalidValue(long pTypeTree,
 hyper invalidValue, long *returnCode)

Purpose

This function sets the invalid value for the specified scalar for 64-bit scalar types. Invalid
values are supported in type files of version 3 or later. This function must be called with
LdrfSetScalar64Details(). See LdrfSetScalarInvalidValue() for setting the invalid
value for 8-, 16-, and 32-bit scalar types.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LONMARK Resource File API Reference Guide 75

LdrfSetFloatDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFloatDetails(PLdrfTypeTree pTypeTree,
 float minValid, float maxValid)

COM Interface Prototype

LdrfTypeTree.SetFloatDetails(long pTypeTree,
 long minValid, long maxValid,
 long *returnCode)

Purpose

This function sets the details for a float scalar node in a type tree. The parameters are min
and max validation constants. This type may complete the tree, depending on nested
context.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call toa new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetDoubleFloatDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetDoubleFloatDetails(PLdrfTypeTree pTypeTree,
 double minValid, double maxValid)

COM Interface Prototype

LdrfMiscFns1.SetDoubleFloatDetails(long pTypeTree,
 double minValid, double maxValid,
 long *returnCode)

Purpose

This function sets the details for a double float scalar node in a type tree. The parameters
are min and max validation constants. This type may complete the tree, depending on
nested context.

76 LONMARK Resource File API Reference Guide

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetBitfieldDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetBitfieldDetails(PLdrfTypeTree pTypeTree, TUByte bitfSize,
 TUByte bitfOffset, TBool bitfSigned,
 TLong minValid, TLong maxValid,
 TShort scaleA, TShort scaleB, TShort scaleC)

COM Interface Prototype

LdrfTypeTree.SetBitfieldDetails(long pTypeTree, long bitfSize,
 long bitfOffset, long bitfSigned,
 long minValid, long maxValid,
 long scaleA, long scaleB, long scaleC,
 long *returnCode)

Purpose

This function sets the details for a bitfield scalar node in a type tree. The parameters are
offset, size, and signedness of the bitfield within an 8-bit byte, min and max validation
constants, in raw form, and scaling factors. This type may complete the tree, depending on
nested context.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LDRF_ERR_PARAM Bad parameters (e.g. bitfield offset plus size greater than
eight). The minium and maximum values are not validated
against the bitfield size and signedness.

LONMARK Resource File API Reference Guide 77

LdrfSetEnumDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetEnumDetails(PLdrfTypeTree pTypeTree,
 TUByte enumSel, TUShort enumIndex,
 TLong minValid, TLong maxValid)

COM Interface Prototype

LdrfTypeTree.SetEnumDetails(long pTypeTree,
 long enumSel, long enumIndex,
 long minValid, long maxValid, long *returnCode)

Purpose

This function is called to set the details for an enumeration scalar node in a type tree. The
parameters are enumeration selector and index and min and max validation constants, in
raw form. This type may complete the tree, depending on nested context.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetArrayDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetArrayDetails(PLdrfTypeTree pTypeTree,
 TUShort numElements)

COM Interface Prototype

LdrfTypeTree.SetArrayDetails(long pTypeTree, long numElements,
 long *returnCode)

Purpose

This function sets the details for an array node in a type tree. The parameter is the number
of elements in the array. The type tree node or nodes for an element must be added next.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

78 LONMARK Resource File API Reference Guide

LDRF_ERR_SEQUENCE Incorrect sequence of calls, was expecting a call to a new node
function, or a different set details function.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetStructUnionDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetStructUnionDetails(PLdrfTypeTree pTypeTree,
 TUShort numFields)

COM Interface Prototype

LdrfTypeTree.SetStructUnionDetails(long pTypeTree, long numFields,
 long *returnCode)

Purpose

This function sets the details for a structure or union node in a type tree. The parameter is
the number of fields in the aggregate. The type tree node or nodes for each field in the
aggregate must be added next.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfSetReferenceDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetReferenceDetails(PLdrfTypeTree pTypeTree,
 TUByte typeSelector, TUShort typeIndex,
 TUShort typeSize)

COM Interface Prototype

LdrfTypeTree.SetReferenceDetails(long pTypeTree,
 long typeSel, long typeIndex,
 long typeSize, long *returnCode)

LONMARK Resource File API Reference Guide 79

Purpose

This function sets the details for a reference node in a type tree. Only standard or user-
defined network variable types may be referenced. The parameters are the selector, the type
index of the SNVT or UNVT (0 selector for SNVT), and the size of the referent type in bytes.
This type may complete the tree, depending on nested context.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to a new node function or a
different set details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Set call accepted; a call to add a new node is required next.

LdrfScanTypeTree

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfScanTypeTree(PLdrfTypeTree pTypeTree, PUShort pTypeSize,
 PBool pHasRefs)

COM Interface Prototype

LdrfTypeTree.ScanTypeTree(long pTypeTree,
 long *pTypeSize, long *pHasRefs,
 long *returnCode)

Purpose

This function demarcates the beginning of a sequence of type reading calls. Each subsequent
call returns information about the next type node in the tree, and returns
LDRF_ERR_INCOMPLETE until the last tree node is read, and at that time the last call
returns LDRF_ERR_NONE. If the reading calls are out of sequence,
LDRF_ERR_SEQUENCE is returned, and that is a non-recoverable error. The initial size
type is also returned (to get the current size, you must perform a comprehensive type tree
walk using the LdrfScanTypeTree(), LdrfReadTypeTreeNode(), and LdrfGetDetails()
functions, as necessary). A flag is returned that indicates if a type tree contains references.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

80 LONMARK Resource File API Reference Guide

LdrfFindTypeTreeNode

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFindTypeTreeNode(PLdrfTypeTree pTypeTree, TBool relative,
 LPCSTR pFieldName)

COM Interface Prototype

LdrfTypeTree.FindTypeTreeNode(long pTypeTree,
 long relative, BSTR fieldName,
 long *returnCode)

Purpose

This function sets the context of the type tree to a particular branch for a sequence of type
reading calls. The context can be set with a fully qualified name from the beginning of the
tree, or it can be set with a name relative to the current context. Each subsequent call
returns information about the next type node in the tree starting with the branch, and
returns LDRF_ERR_INCOMPLETE until the last tree node is read, and at that time the
last call returns LDRF_ERR_NONE. If the reading calls are out of sequence, the return
code LDRF_ERR_SEQUENCE is returned, and that is a non-recoverable error.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_NOT_FOUND No field with that name was found.

LdrfReadTypeTreeNode

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfReadTypeTreeNode(PLdrfTypeTree pTypeTree, PNVTType pNodeType,
 PUShort pTypeOffset, PUShort pTypeSize,
 LPSTR pName, PUShort pLength,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pResUntSel, PULong pResUntIndex)

COM Interface Prototype

LdrfTypeTree.ReadTypeTreeNode(long pTypeTree, nvtType *pNodeType,
 long *pTypeOffset, long *pTypeSize,
 BSTR *pName,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pResUntSel, long *pResUntIndex,
 long *returnCode)

LONMARK Resource File API Reference Guide 81

Purpose

This function reads the next node in the type tree. This call returns the node type, the
programmatic name string, and the three resource string indices for name, comment, and
units. Callers to this function can furnish a buffer to receive a copy of the programmatic
name string, and for the C language API the max length of that buffer must be placed in
length value pointed to by pLength. The length will be updated to reflect the length of the
string. The string doesn't have to be read - a length of 0 and a NULL string pointer can be
supplied to not read the string. The byte offset of this type within the overall type is
returned.

The call to this function must be followed by a read details call. This function always returns
LDRF_ERR_INCOMPLETE since it must always be followed by a read details call unless
it returns another of the error codes, or returns LDRF_ERR_NO_MORE_NODES.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—the tree must be put into scan
state by a previous call.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LDRF_ERR_NO_MORE_NODES The scan has reached the end of the type tree.

LDRF_ERR_INCOMPLETE New node accepted; a call to set details is required next.

LdrfGetScalarDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetScalarDetails(PLdrfTypeTree pTypeTree,
 PLong pMinValid, PLong pMaxValid,
 PShort pScaleA, PShort pScaleB, PShort pScaleC)

COM Interface Prototype

LdrfTypeTree.GetScalarDetails(long pTypeTree,
 long *pMinValid, long *pMaxValid,
 long *pScaleA, long *pScaleB, long *pScaleC,
 long *returnCode)

Purpose

This function gets the details for an 8-, 16, or 32-bit scalar node in a type tree (not including
an enum, a bitfield, or a float). The parameters are min and max validation constants, in
raw form, and scaling constants. See LdrfGetScalar64Details() for getting 64-bit scalar
type detals.

82 LONMARK Resource File API Reference Guide

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get call done; a call to read another type node is required
next.

LdrfGetScalar64Details

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetScalar64Details(PLdrfTypeTree pTypeTree,
 __DRF_PINT64 pMinValid, __DRF_PINT64 pMaxValid,
 PShort pScaleA, PShort pScaleB, PShort pScaleC)

COM Interface Prototype

LdrfScalar64Types.GetScalar64Details(long pTypeTree,
 hyper *pMinValid, hyper *pMaxValid,
 long *pScaleA, long *pScaleB, long *pScaleC,
 long *returnCode)

Purpose

This function gets the details for a 64-bit scalar node in a type tree (not including an enum, a
bitfield, or a float). The parameters are min and max validation constants, in raw form, and
scaling constants. See LdrfGetScalarDetails() for getting 8-, 16-, and 32-bitt scalar type
detals.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get call done; a call to read another type node is required
next.

LONMARK Resource File API Reference Guide 83

LdrfGetScalarInvalidValue

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetScalarInvalidValue(PLdrfTypeTree pTypeTree,
 PBoolByte pInvalidValuePresent,
 PLong pInvalidValue)

COM Interface Prototype

LdrfGeneral2.GetScalarInvalidValue(long pTypeTree,
 long *pInvalidValuePresent,
 long *pInvalidValue, long *returnCode)

Purpose

This function gets the invalid value of the specified 8-, 16-, or 32-bit scalar. Invalid values
are supported in version 3 or later type files. This function must be called with
LdrfGetScalarDetails(). See LdrfGetScalar64InvalidValue() for getting the invalid
value for 64-bit scalar types.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LdrfGetScalar64InvalidValue

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetScalar64InvalidValue(PLdrfTypeTree pTypeTree,
 PBoolByte pInvalidValuePresent,
 __DRF_PINT64 pInvalidValue)

COM Interface Prototype

LdrfScalar64Types.GetScalar64InvalidValue(long pTypeTree,
 long *pInvalidValuePresent,
 hyper *pInvalidValue,
 long *returnCode)

84 LONMARK Resource File API Reference Guide

Purpose

This function gets the invalid value of the specified 64-bit scalar. 64-bit invalid values are
supported in version 6 or later type files. This function must be called with
LdrfGetScalar64Details(). See LdrfGetScalarInvalidValue() for getting the invalid
value for 8-, 16-, and 32-bit scalar types.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LdrfGetFloatDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFloatDetails(PLdrfTypeTree pTypeTree,
 float *pMinValid, float *pMaxValid)

COM Interface Prototype

LdrfTypeTree.GetFloatDetails(long pTypeTree,
 float *pMinValid, float *pMaxValid,
 long *returnCode)

Purpose

This function gets the details for a float scalar node in a type tree. The parameters are min
and max validation constants.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
requied next.

LONMARK Resource File API Reference Guide 85

LdrfGetDoubleFloatDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetDoubleFloatDetails(PLdrfTypeTree pTypeTree,
 double * pMinValid, double * pMaxValid)

COM Interface Prototype

LdrfMiscFns1.GetDoubleFloatDetails(long pTypeTree,
 double *pMinValid, double *pMaxValid,
 long *returnCode)

Purpose

This function gets the details for a double float scalar node in a type tree. The parameters
are min and max validation constants.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LdrfGetBitfieldDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetBitfieldDetails(PLdrfTypeTree pTypeTree, PUByte pBitfSize,
 PUByte pBitfOffset, PBool pBitfSigned,
 PLong pMinValid, PLong pMaxValid,
 PShort pScaleA, PShort pScaleB, PShort pScaleC)

COM Interface Prototype

LdrfTypeTree.GetBitfieldDetails(long pTypeTree, long *pBitfSize,
 long *pBitfOffset, long *pBitfSigned,
 long *pMinValid, long *pMaxValid,
 long *pScaleA, long *pScaleB, long *pScaleC,
 long *returnCode)

86 LONMARK Resource File API Reference Guide

Purpose

This function gets the details for a bitfield scalar node in a type tree. The parameters are
offset, size, and signedness of bitfield within an 8-bit byte, min, and max validation
constants, in raw form, and scaling factors.

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LdrfGetEnumDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetEnumDetails(PLdrfTypeTree pTypeTree,
 PUByte pEnumSel, PUShort pEnumIndex,
 PLong pMinValid, PLong pMaxValid)

COM Interface Prototype

LdrfTypeTree.GetEnumDetails(long pTypeTree,
 long *pEnumSel, long *pEnumIndex,
 long *pMinValid, long *pMaxValid,
 long *returnCode)

Purpose

This function gets the details for an enumeration scalar node in a type tree. The parameters
are the enumeration selector and index and min and max validation constants.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LONMARK Resource File API Reference Guide 87

LdrfGetArrayDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetArrayDetails(PLdrfTypeTree pTypeTree, TBool multiple,
 PUShort pNumElements)

COM Interface Prototype

LdrfTypeTree.GetArrayDetails(long pTypeTree, long multiple,
 long *pNumElements, long *returnCode)

Purpose

This function gets the details for an array node in a type tree. The parameter is the number
of elements in the array. The type tree node or nodes for the element must be read next.

To linearize a type, retrieve the element nodes n times, where n corresponds to the array
bound. You can use this method to convert a data item from formatted to binary, or vice
versa. This can be accomplished by setting the multiple boolean parameter to TRUE, and
the LdrfReadTypeTreeNode() function will take care of the rest, including controlling the
type node offset as each element of the array is walked through. Setting multiple to FALSE
indicates that the subsequent type nodes of array elements should only be returned once.
The offset will be for the last element of the array, in that case.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node next.

LdrfGetStructUnionDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetStructUnionDetails(PLdrfTypeTree pTypeTree,
 PUShort pNumFields)

COM Interface Prototype

LdrfTypeTree.GetStructUnionDetails(long pTypeTree, long *pNumFields,
 long *returnCode)

88 LONMARK Resource File API Reference Guide

Purpose

This function gets the details for a structure or union node in a type tree. The parameter is
the number of fields in the aggregate. The type tree node or nodes for each field in the
aggregate must be read next.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LdrfGetReferenceDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetReferenceDetails(PLdrfTypeTree pTypeTree,
 PUByte pTypeSel, PUShort pTypeIndex)

COM Interface Prototype

LdrfTypeTree.GetReferenceDetails(long pTypeTree,
 long *pTypeSel, long *pTypeIndex,
 long *returnCode)

Purpose

This function sets the details for a reference node in a type tree. The output parameters are
the selector and the type index of the SNVT or UNVT (0 selector for SNVTs). This type may
complete the tree, depending on nested context.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—a call to the read function or a
different get details function was expected.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Get function completed; a call to read another type node is
required next.

LONMARK Resource File API Reference Guide 89

LdrfGraftReference

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGraftReference(PLdrfTypeTree pTypeTree,
 PLdrfTypeTree pReferentTree)

COM Interface Prototype

LdrfTypeTree.GraftReference(long pTypeTree, long pReferentTree,
 long *returnCode)

Purpose

This function changes a reference node in a type tree into the nodes that make up the
referent type. This change cannot be undone, and the knowledge that this node is a
reference is lost. The parameters are the type tree containing the type reference, and the
referent type, respectively. Following this call, the referent type must not be accessed
further, nor can it be freed separately, as it has been grafted into the main type tree.

There are two sets of programmatic names, and groups of resource string indices being
combined for this node. The ones in the reference will supersede the ones in the referent. If
the reference does not contain resource string indices, however, the ones in the referent will
be used.

LdrfGraftReference() is an in-memory operation that does not change the type tree in the
resource file.

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree or referent tree passed in.

LDRF_ERR_SEQUENCE Incorrect sequence of calls—this call must be the next
operation on a type tree following the
LdrfReadTypeTreeNode() operations that returned a node
type of NVT_TYPE_REFERENCE, and then a call to the
LdrfGetReferenceDetails() access function. The caller can
use the selector to resolve the reference and obtain a type tree
for the referent.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE Paste function completed; a call to read another type node
next to get the first node of the referent type is required next.

90 LONMARK Resource File API Reference Guide

LdrfApplyValOverride

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfApplyValOverride(PLdrfTypeTree pTypeTree,
 PUByteArray pValMin, PUByteArray pValMax)

COM Interface Prototype

LdrfTypeTree.ApplyValOverride(long pTypeTree, BSTR valMin, BSTR valMax.
 Long *returnCode)

Purpose

This function applies a validation override to the nodes in a type tree. This change cannot be
undone. The parameters are the type tree and one or both pointers to byte arrays containing
min and max validation information (either or both pointers may be NULL).

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LdrfApplyValOverrideEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfApplyValOverrideEx(PLdrfTypeTree pTypeTree,
 PUByteArray pValMin, PUByteArray pValMax, PUByteArray
 pValInvalid)

COM Interface Prototype

LdrfTypeTree.ApplyValOverrideEx(long pTypeTree, BSTR valMin,
 BSTR valMax, BSTR valInvalid.Long *returnCode)

Purpose

This function is identical to the LdrfApplyValOverride() function except that it takes an
additional pointer to a byte array containing the invalid validation information.

This function applies a validation override to the nodes in a type tree. This change cannot be
undone. The parameters are the type tree and one, two, or all three pointers to byte arrays
containing min, max, and invalid validation information (either or all pointers may be
NULL).

Return Values

LDRF_ERR_TYPE_TREE Invalid type tree passed in.

LONMARK Resource File API Reference Guide 91

Functional Profile Template File Functions
Functional profiles group related network variables and configuration properties, optionally
combined with additional details such as descriptive strings of overrides for certain aspects,
into a single entity. Functional profiles are the type definitions for functional blocks, which
are also known as LonMark objects. Functional profiles are defined within resource files
called functional profile template files.

LdrfGetFPTFileInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTFileInfo(PLdrfFileInfo pInfo,
 PUShort pResDep0, PUShort pResDep1,
 PUShort pResDep2, PUShort pResDep3,
 PUShort pResDep4, PUShort pResDep5,
 PUShort pResDep6,
 PUShort pTypDep0, PUShort pTypDep1,
 PUShort pTypDep2, PUShort pTypDep3,
 PUShort pTypDep4, PUShort pTypDep5,
 PUShort pTypdep6,
 PUShort pNumFPTs)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTFileInfo(long pInfo,
 long *pResDep0, long *pResDep1,
 long *pResDep2, long *pResDep3, long *pResDep4,
 long *pResDep5, long *pResDep6,
 long *pTypDep0, long *pTypDep1, long *pTypDep2,
 long *pTypDep3, long *pTypDep4, long *pTypDep5,
 long *pTypDep6, long *pNumFPTs,
 long *returnCode)

Purpose

This function gets information specific to the open functional profile template file. The pInfo
parameter is supplied, along with pointers to the different types of data.

Two sets of dependency data are supplied, but this data is not commonly used. The
pNumFPTs output parameter returns the number of functional profiles defined in the
functional profile file.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE The file has not been completely created.

92 LONMARK Resource File API Reference Guide

LdrfSetFPTFileInfo

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTFileInfo(PLdrfFileInfo pInfo,
 TUShort resDep0, TUShort resDep1,
 TUShort resDep2, TUShort resDep3,
 TUShort resDep4, TUShort resDep5,
 TUShort resDep6,
 TUShort typDep0, TUShort typDep1,
 TUShort typDep2, TUShort typDep3,
 TUShort typDep4, TUShort typDep5,
 TUShort typdep6)

COM Interface Prototype

LdrfFuncProfTmplt.SetFPTFileInfo(long pInfo,
 long resDep0, long resDep1,
 long resDep2, long resDep3, long resDep4,
 long resDep5, long resDep6, long typDep0,
 long typDep1, long typDep2, long typDep3,
 long typDep4, long typDep5, long typDep6,
 long *returnCode)

Purpose

This function is sets dependency information specific to the open functional profile file. The
pInfo parameter is supplied, along with the dependency data.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LdrfGetFPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPT(PLdrfFileInfo pInfo, TUShort index,
 PUShort pKey, LPSTR pName, PUShort pLength,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pManNVs, PUByte pOptNVs,
 PUByte pManCPs, PUByte pOptCPs,
 PUByte pPrincipalNV)

LONMARK Resource File API Reference Guide 93

COM Interface Prototype

LdrfFuncProfTmplt.GetFPT(long pInfo, long index,
 long *pKey, BSTR *pName,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pManNVs, long *pOptNVs,
 long *pManCPs, long *pOptCPs,
 long *pPrincipalNV, long *returnCode)

Purpose

This function retrieves a functional profile from an open functional profile template file. The
pInfo parameter for the file is supplied, along with the index for the functional profile. Each
functional profile also has a 16-bit numeric key, and this is returned. This key is used to
identify the profile’s implementation in the node’s SD string. Each functional profile has a
programmatic string and two resource string indices, all are returned. The caller must
allocate a buffer to hold the string, and pass the length of the buffer through the length
reference parameter (C language API only), which will be altered to indicate the length
actually read. Four byte values are returned, respectively representing the number of
mandatory network variables, optional network variables, mandatory configuration
properties, and optional configuration properties in the functional profile. Lastly, the
principal network variables’s index (if one is designated) is returned. The principal network
variable’s index is the index within this functional profile’s set of member network variables.
Each network variable and configuration property record is obtained separately by calling
other access functions documented below.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfGetFPTEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTEx(PLdrfFileInfo pInfo, TUShort index,
 PUShort pKey, LPSTR pName, PUShort pLength,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pManNVs, PUByte pOptNVs,
 PUByte pManCPs, PUByte pOptCPs,
 PUByte pPrincipalNV, PUShort pFlags)

94 LONMARK Resource File API Reference Guide

Purpose

This function is identical to the LdrfGetFPT() function, with the addition of a new pFlags
parameter. The pFlags parameter is reserved for future use and the value is set to zero by
the LdrfGetFPTEx() function.

This function retrieves a functional profile from an open functional profile template file. The
pInfo parameter for the file is supplied, along with the index for the functional profile. Each
functional profile also has a 16-bit numeric key, and this is returned. This key is used to
identify the profile’s implementation in the node’s SD string. Each functional profile has a
programmatic string and two resource string indices, all are returned. The caller must
allocate a buffer to hold the string, and pass the length of the buffer through the length
reference parameter (C language API only), which will be altered to indicate the length
actually read. Four byte values are returned, respectively representing the number of
mandatory network variables, optional network variables, mandatory configuration
properties, and optional configuration properties in the functional profile. Lastly, the
principal network variables’s index (if one is designated) is returned. The principal network
variable’s index is the index within this functional profile’s set of member network variables.
Each network variable and configuration property record is obtained separately by calling
other access functions documented below.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfGetFPTByName

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTByName(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PUShort pKey,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pManNVs, PUByte pOptNVs,
 PUByte pManCPs, PUByte pOptCPs,
 PUByte pPrincipalNV)

LONMARK Resource File API Reference Guide 95

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTByName(long pInfo, BSTR name,
 long *pIndex, long *pKey,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pManNVs, long *pOptNVs,
 long *pManCPs, long *pOptCPs,
 long *pPrincipalNV, long *returnCode)

Purpose

This function retrieves a functional profile from an open functional profile template file using
the programmatic name key string for the type. The pInfo parameter for the file is supplied,
along with a pointer to the name string for the functional profile. The index of the functional
profile is returned. Each functional profile has two resource string indices, both are
returned. Five byte values are returned, respectively representing the number of mandatory
network variables, optional network variables, mandatory configuration properties, and
optional configuration properties in the functional profile, and the index of the principal
network variable.

Return Values

LDRF_ERR_FILE_INFO The file info structure contents was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LdrfGetFPTByNameEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTByName(PLdrfFileInfo pInfo, LPCSTR name,
 PUShort pIndex, PUShort pKey,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pManNVs, PUByte pOptNVs,
 PUByte pManCPs, PUByte pOptCPs,
 PUByte pPrincipalNV, PUShort pFlags)

Purpose

This function is identical to the LdrfGetFPTByName() function, with the addition of a new
pFlags parameter. The pFlags parameter is reserved for future use and the value is set to
zero by the LdrfGetFPTByNameEx() function.

This function retrieves a functional profile from an open functional profile template file using
the programmatic name key string for the type. The pInfo parameter for the file is supplied,
along with a pointer to the name string for the functional profile. The index of the functional
profile is returned. Each functional profile has two resource string indices, both are
returned. Five byte values are returned, respectively representing the number of mandatory

96 LONMARK Resource File API Reference Guide

network variables, optional network variables, mandatory configuration properties, and
optional configuration properties in the functional profile, and the index of the principal
network variable.

Return Values

LDRF_ERR_FILE_INFO The file info structure contents was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LdrfGetFPTByKey

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTByKey(PLdrfFileInfo pInfo, TUShort key,
 PUShort pIndex, LPSTR pName, PUShort pLength,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pManNVs, PUByte pOptNVs,
 PUByte pManCPs, PUByte pOptCPs,
 PUByte pPrincipalNV)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTByKey(long pInfo, long key,
 long *pIndex, BSTR *pName,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pManNVs, long *pOptNVs,
 long *pManCPs, long *pOptCPs,
 long *pPrincipalNV, long *returnCode)

Purpose

This function retrieves a functional profile from an open function profile template file using
the numeric key for the type. The pInfo parameter for the file is supplied, along with the
numeric key for the functional profile. The index of the functional profile is returned, as is
the programmatic name. Each functional profile has two resource string indices, both are
returned. Five byte values are returned, respectively representing the number of mandatory
network variables, optional network variables, mandatory configuration properties, and
optional configuration properties in the functional profile, and the index of the principal
network variable.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LONMARK Resource File API Reference Guide 97

LdrfGetFPTByKeyEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTByKeyEx(PLdrfFileInfo pInfo, TUShort key,
 PUShort pIndex, LPSTR pName, PUShort pLength,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pManNVs, PUByte pOptNVs,
 PUByte pManCPs, PUByte pOptCPs,
 PUByte pPrincipalNV, PUShort pFlags)

Purpose

This function is identical to the LdrfGetFPTByKey() function, with the addition of a new
pFlags parameter. The pFlags parameter is reserved for future use and the value is set to
zero by the LdrfGetFPTByKeyEx() function.

This function retrieves a functional profile from an open function profile template file using
the numeric key for the type. The pInfo parameter for the file is supplied, along with the
numeric key for the functional profile. The index of the functional profile is returned, as is
the programmatic name. Each functional profile has two resource string indices, both are
returned. Five byte values are returned, respectively representing the number of mandatory
network variables, optional network variables, mandatory configuration properties, and
optional configuration properties in the functional profile, and the index of the principal
network variable.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LdrfSetFPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPT(PLdrfFileInfo pInfo, TUShort index, TUShort key,
 LPCSTR name,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte manNVs, TUByte optNVs,
 TUByte manCPs, TUByte optCPs, TUByte principalNV)

98 LONMARK Resource File API Reference Guide

COM Interface Prototype

LdrfFuncProfTmplt.SetFPT(long pInfo,
 long index, long key, BSTR name,
 long resNmSel, long resNmIndex,
 long resCmtSel, long resCmtIndex,
 long manNVs, long optNVs, long manCPs, long optCPs,
 long principalNV, long *returnCode)

Purpose

This function adds or modifies a functional profile in a functional profile template file that
has been opened for editing. The index, numeric key, programmatic name key, and the two
resource string selectors and indices must be supplied. Also, counts for mandatory network
variables, optional network variables, mandatory configuration properties, and optional
configuration properties must all be supplied. If a network variable is to be designated as a
principal network variable, its index within the profile’s set of member network variables
must be specified; otherwise, 0 must be used. The index is used as the key for the functional
profile record to change. The numeric key and name keys are checked to make sure they are
not a duplicate conflicting with another record. The specific member network variables and
configuration properties will be created as blank, and must be added in order in following
calls to the access methods documented below.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if adding,
the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another functional profile
in the file.

LdrfSetFPTEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTEx(PLdrfFileInfo pInfo, TUShort index, TUShort key,
 LPCSTR name,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte manNVs, TUByte optNVs,
 TUByte manCPs, TUByte optCPs, TUByte principalNV, TUShort flags)

Purpose

This function is identical to the LdrfSetFPT() function, with the addition of a new flags
parameter. The flags parameter is reserved for future use and the value must be set to zero
when calling the LdrfSetFPTEx() function.

LONMARK Resource File API Reference Guide 99

This function adds or modifies a functional profile in a functional profile template file that
has been opened for editing. The index, numeric key, programmatic name key, and the two
resource string selectors and indices must be supplied. Also, counts for mandatory network
variables, optional network variables, mandatory configuration properties, and optional
configuration properties must all be supplied. If a network variable is to be designated as a
principal network variable, its index within the profile’s set of member network variables
must be specified; otherwise, 0 must be used. The index is used as the key for the functional
profile record to change. The numeric key and name keys are checked to make sure they are
not a duplicate conflicting with another record. The specific member network variables and
configuration properties will be created as blank, and must be added in order in following
calls to the access methods documented below.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if adding,
the new index is not correct (must be contiguous).

LDRF_ERR_DUPLICATE The name key is already in use by another functional profile
in the file.

LdrfGetFPTNV

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTNV(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVindex,
 LPSTR pNVName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pNVTSel, PUShort pNVTIndex,
 PUByte pDirPollServ, PUShort pByteArrayLen,
 PUByteArray *ppValMin, PUByteArray *ppValMax)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTNV(long pInfo,
 long FPTindex, long NVindex,
 BSTR *pNVName, long *pMandatory,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pNVTSel, long *pNVTIndex,
 long *pDirPollServ, BSTR *pValMin, BSTR *pValMax,
 long *returnCode)

100 LONMARK Resource File API Reference Guide

Purpose

This function gets a functional profile’s network variable member record from a functional
profile template file that has been opened. The file info, and the index (starting from 1) of
the member network variable must be specified. The network variable programmatic name
is returned in a buffer, the length of the buffer must be passed in (for the C language API
only), and the length is modified to reflect the number of actual bytes in the name. A
Boolean value that indicates whether the network variable is mandatory or optional is
returned. Language resource string selectors and indices are returned for the network
variable’s language-dependent name and an additional info/comment string. The network
variable’s type selector and index are returned. An encoding of the direction, polledness, and
default service type is returned. Two pointers to byte arrays containing the optional min and
max overrides of the validation range are returned if the validation range is overridden
(otherwise a NULL is returned). The pointer to a length for each byte array precedes the
byte array pointers. Your application must call the LdrfFreeByteArray() function to free
the returned byte array pointers when your application is done with them. If extended
SNVT-ID support is not enabled, this function will hide standard network variable types
whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LdrfGetFPTNVEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTNVEx(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVindex,
 LPSTR pNVName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pNVTSel, PUShort pNVTIndex,
 PUByte pDirPollServ, PUShort pByteArrayLen,
 PUByteArray *ppValMin, PUByteArray *ppValMax
 PUByteArray *ppValInvalid)

LONMARK Resource File API Reference Guide 101

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTNVEx(long pInfo,
 long FPTindex, long NVindex,
 BSTR *pNVName, long *pMandatory,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pNVTSel, long *pNVTIndex,
 long *pDirPollServ, BSTR *pValMin, BSTR *pValMax,
 BSTR *pValInvalid, long *returnCode)

Purpose

This function is identical to the LdrfGetFPTNV() function except that it returns an
additional reference parameter for a byte array containing the default invalid value for the
network variable type.

This function gets a functional profile’s network variable member record from a functional
profile template file that has been opened. The file info, and the index (starting from 1) of
the member network variable must be specified. The network variable programmatic name
is returned in a buffer, the length of the buffer must be passed in (for the C language API
only), and the length is modified to reflect the number of actual bytes in the name. A
Boolean value that indicates whether the network variable is mandatory or optional is
returned. Language resource string selectors and indices are returned for the network
variable’s language-dependent name and an additional info/comment string. The network
variable’s type selector and index are returned. An encoding of the direction, polledness, and
default service type is returned. Three pointers to byte arrays containing the optional min
and max overrides of the validation range and the optional invalid value are returned if the
validation range and invalid value are overridden (otherwise a NULL is returned). The
pointer to a length for each byte array precedes the byte array pointers. Your application
must call the LdrfFreeByteArray() function to free the returned byte array pointers when
your application is done with them. If extended SNVT-ID support is not enabled, this
function will hide standard network variable types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

102 LONMARK Resource File API Reference Guide

LdrfGetFPTNVEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTNVEx2(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVindex,
 LPSTR pNVName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pNVTSel, PUShort pNVTIndex,
 PUByte pDirPollServ, PUShort pByteArrayLen,
 PUByteArray *ppValMin, PUByteArray *ppValMax
 PUByteArray *ppValInvalid, PUShort pFlags)

Purpose

This function is identical to the LdrfGetFPTNVEx() function, with the addition of a new
pFlags parameter. The pFlags parameter is reserved for future use and the value is set to
zero by the LdrfGetFPTNVEx2() function.

This function gets a functional profile’s network variable member record from a functional
profile template file that has been opened. The file info, and the index (starting from 1) of
the member network variable must be specified. The network variable programmatic name
is returned in a buffer, the length of the buffer must be passed in (for the C language API
only), and the length is modified to reflect the number of actual bytes in the name. A
Boolean value that indicates whether the network variable is mandatory or optional is
returned. Language resource string selectors and indices are returned for the network
variable’s language-dependent name and an additional info/comment string. The network
variable’s type selector and index are returned. An encoding of the direction, polledness, and
default service type is returned. Three pointers to byte arrays containing the optional min
and max overrides of the validation range and the optional invalid value are returned if the
validation range and invalid value are overridden (otherwise a NULL is returned). The
pointer to a length for each byte array precedes the byte array pointers. Your application
must call the LdrfFreeByteArray() function to free the returned byte array pointers when
your application is done with them. If extended SNVT-ID support is not enabled, this
function will hide standard network variable types whose ID exceeds 250.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LONMARK Resource File API Reference Guide 103

LdrfGetFPTCP

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCP(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPindex,
 PUShort pAppliesTo,
 LPSTR pCPName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pCPTSel, PUShort pCPTIndex,
 PUByte pModifyArray,
 PUShort pByteArrayLen, PUByteArray *ppDefault,
 PUByteArray *ppValMin, PUByteArray *ppValMax
 PUBByteArray *ppValInvalid)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTCP(long pInfo, long FPTindex, long CPindex,
 long *pAppliesTo, BSTR *pCPName, long *pMandatory,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pCPTSel, long *pCPTIndex,
 long *pModifyArray, BSTR *pDflt,
 BSTR *pValMin, BSTR *pValMax, long *returnCode)

Purpose

This function gets a functional profile's configuration property member record from a
functional profile template file that has been opened. The file info, and the index (starting
from 1) of the member configuration property must be specified. The appliesTo value is
returned. The appliesTo parameter is set to zero if the configuration property applies to the
whole functional block. It is set to the index of the network variable within the functional
profile’s set of member network variables if the functional profile is defined in an functional
profile template file with file format version 1 or 2, and it is set to the this network variable’s
member number if the profile is defined in an functional profile template file with file format
version 3 or better. In the latter case, which supports inheriting functional profiles, you can
OR a value of 0x8000 with the member number to indicate that the CP applies to a network
variable (by its member number) that is defined in the inherited profile, rather than the one
containing the CP.

The configuration property programmatic name is returned in a buffer, the length of the
buffer must be passed in (for the C language API only), and the length is modified to reflect
the number of actual bytes in the name. A Boolean value that indicates whether the network
variable is mandatory or optional is returned. Language resource string selectors and
indices are returned for the network variable’s language-dependent name and an additional
info/comment string. The configuration properties’s type selector and index are returned.
An encoding of the modification restrictions and array indicator is returned. A pointer to a
byte array containing the optional default value is returned, if the default value is given
(otherwise NULL is returned). Two pointers to byte arrays containing the optional min and
max overrides of the validation range are returned, if the validation range is overridden

104 LONMARK Resource File API Reference Guide

(otherwise NULL is returned). The pointer to a length for each byte array precedes the byte
array pointers. Your application must call the LdrfFreeByteArray() function to free the
returned byte array pointers when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LdrfGetFPTCPEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPEx(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPindex,
 PUShort pAppliesTo,
 LPSTR pCPName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pCPTSel, PUShort pCPTIndex,
 PUByte pModifyArray,
 PUShort pByteArrayLen, PUByteArray *ppDefault,
 PUByteArray *ppValMin, PUByteArray *ppValMax
 PUByteArray *ppValInvalid)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTCPEx(long pInfo, long FPTindex, long CPindex,
 long *pAppliesTo, BSTR *pCPName, long *pMandatory,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pCPTSel, long *pCPTIndex,
 long *pModifyArray, BSTR *pDflt,
 BSTR *pValMin, BSTR *pValMax, BSTR *pValInvalid,
 long *returnCode)

Purpose

This function is identical to the LdrfGetFPTCP() function except that it returns an
additional reference parameter for a byte array containing the default invalid value for the
configuration property type.

This function gets a functional profile's configuration property member record from a
functional profile template file that has been opened. The file info, and the index (starting
from 1) of the member configuration property should be specified. The appliesTo value is

LONMARK Resource File API Reference Guide 105

returned. The appliesTo parameter is set to zero if the configuration property applies to the
whole functional block. It is set to the index of the network variable within the functional
profile’s set of member network variables if the functional profile is defined in an functional
profile template file with file format version 1 or 2, and it is set to the this network variable’s
member number if the profile is defined in an functional profile template file with file format
version 3 or better. In the latter case, which supports inheriting functional profiles, you can
OR a value of 0x8000 with the member number to indicate that the CP applies to a network
variable (by its member number) that is defined in the inherited profile, rather than the one
containing the CP.

The configuration property programmatic name is returned in a buffer, the length of the
buffer must be passed in (for the C language API only), and the length is modified to reflect
the number of actual bytes in the name. A Boolean value that indicates whether the network
variable is mandatory or optional is returned. Language resource string selectors and
indices are returned for the network variable’s language-dependent name and an additional
info/comment string. The configuration properties’s type selector and index are returned.
An encoding of the modification restrictions and array indicator is returned. A pointer to a
byte array containing the optional default value is returned if the default value is given
(otherwise NULL is returned). Three pointers to byte arrays containing the optional min
and max overrides of the validation range and the optional invalid value are returned if the
validation range and invalid value are overridden (otherwise NULL is returned). The
pointer to a length for each byte array precedes the byte array pointers. Your application
must call the LdrfFreeByteArray() function to free the returned byte array pointers when
your application is done with them.

Return Values
LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_SYS System error, for example due to exceeding available file

handles, disk space, or memory.
LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a

valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LdrfGetFPTCPEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPEx2(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPindex,
 PUShort pAppliesTo,
 LPSTR pCPName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pCPTSel, PUShort pCPTIndex,
 PUByte pModifyArray,
 PUShort pByteArrayLen, PUByteArray *ppDefault,
 PUByteArray *ppValMin, PUByteArray *ppValMax
 PUByteArray *ppValInvalid, PUShort pFlags)

106 LONMARK Resource File API Reference Guide

Purpose

This function is identical to the LdrfGetFPTCPEx() function, with the addition of a new
pFlags parameter. The pFlags parameter is reserved for future use and the value is set to
zero by the LdrfGetFPTCPEx2() function.

This function gets a functional profile's configuration property member record from a
functional profile template file that has been opened. The file info, and the index (starting
from 1) of the member configuration property should be specified. The appliesTo value is
returned. The appliesTo parameter is set to zero if the configuration property applies to the
whole functional block. It is set to the index of the network variable within the functional
profile’s set of member network variables if the functional profile is defined in an functional
profile template file with file format version 1 or 2, and it is set to the this network variable’s
member number if the profile is defined in an functional profile template file with file format
version 3 or better. In the latter case, which supports inheriting functional profiles, you can
OR a value of 0x8000 with the member number to indicate that the CP applies to a network
variable (by its member number) that is defined in the inherited profile, rather than the one
containing the CP.

The configuration property programmatic name is returned in a buffer, the length of the
buffer must be passed in (for the C language API only), and the length is modified to reflect
the number of actual bytes in the name. A Boolean value that indicates whether the network
variable is mandatory or optional is returned. Language resource string selectors and
indices are returned for the network variable’s language-dependent name and an additional
info/comment string. The configuration properties’s type selector and index are returned.
An encoding of the modification restrictions and array indicator is returned. A pointer to a
byte array containing the optional default value is returned if the default value is given
(otherwise NULL is returned). Three pointers to byte arrays containing the optional min
and max overrides of the validation range and the optional invalid value are returned if the
validation range and invalid value are overridden (otherwise NULL is returned). The
pointer to a length for each byte array precedes the byte array pointers. Your application
must call the LdrfFreeByteArray() function to free the returned byte array pointers when
your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LONMARK Resource File API Reference Guide 107

LdrfGetFPTNVMemberNumber

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTNVMemberNumber(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVindex,
 PUSHORT pNVMemberNumber)

COM Interface Prototype

LdrfGeneral2.GetFPTNVMemberNumber(long pInfo,
 long FPTindex, long NVindex,
 long *pNVMemberNumber, long *returnCode)

Purpose

This function gets a functional profile’s network variable’s member number. The file info,
functional profile template index, and the network variable index (starting from 1) of the
member network variable must be specified.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LdrfGetFPTCPMemberNumber

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPMemberNumber(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPindex,
 PUSHORT pCPMemberNumber)

COM Interface Prototype

LdrfGeneral2.GetFPTCPMemberNumber(long pInfo,
 long FPTindex, long CPindex,
 long *pCPMemberNumber, long *returnCode)

Purpose

This function gets a functional profile’s configuration properties’s member number. The file
info, functional profile template index, and the configuration property index (starting from 1)
of the member configuration property must be specified.

108 LONMARK Resource File API Reference Guide

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LdrfGetFPTNVIndex

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTNVIndex(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVMemberNumber,
 PUSHORT pNVIndex)

COM Interface Prototype

LdrfGeneral2.GetFPTNVIndex(long pInfo,
 long FPTindex, long NVMemberNumber,
 long *pNVIndex, long *returnCode)

Purpose

This function gets a functional profile’s network variable’s index, given the member number.
The file info, functional profile template index, and the network variable member number of
the network variable must be specified.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LdrfGetFPTCPIndex

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPIndex(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPMemberNumber,
 PUSHORT pCPIndex)

LONMARK Resource File API Reference Guide 109

COM Interface Prototype

LdrfGeneral2.GetFPTCPIndex(long pInfo,
 long FPTindex, long CPMemberNumber,
 long *pCPIndex, long *returnCode)

Purpose

This function get a functional profile’s configuration property’s index, given the member
number. The file info, functional profile template index, and the configuration property
member number of the configuration property must be specified.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, like for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that index was found.

LdrfGetFPTCPByAttributes

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPByAttributes(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort appliesTo,
 TUByte CPTSel, TUShort CPTIndex,
 PUShort pCPindex,
 LPSTR pCPName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pCPTSel, PUShort pCPTIndex,
 PUByte pModifyArray,
 PUShort pByteArrayLen, PUByteArray *ppDefault,
 PUByteArray *ppValMin, PUByteArray *ppValMax)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTCPByAttributes(long pInfo,
 long FPTindex, long appliesTo,
 long CPTSel, long CPTIndex, long *pCPIndex,
 BSTR *pCPName, long *pMandatory,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pModifyArray, BSTR *pDflt,
 BSTR *pValMin, BSTR *pValMax,
 long *returnCode)

110 LONMARK Resource File API Reference Guide

Purpose

This function gest a functional profile's configuration property member record from a
functional profile template file that has been opened, using a matching algorithm rather
than the index of the configuration property. The file info, and the type (selector and index)
and the appliesTo value of the member configuration property must be specified. Each
configuration property either is declared to apply to a particular network variable, or to the
object as a whole. A configuration that applies to the object uses an appliesTo value of 0.
Otherwise, the index of the network variable is used. The matching algorithm treats a
configuration property that applies to the principal network variable as synonymous with a
configuration property that applies to the object as a whole. (For example, if the principal
network variable is index 1, and you are looking for a configuration property whose type is
<s>:<i> but you are not sure whether the configuration property applies to the object or to
the principal network variable—if you pass these values in to this routine, using either
appliesTo=0 or appliesTo=1, the configuration property will be found.)

The configuration property index is returned. The programmatic name is returned in a
buffer, the length of the buffer must be passed in (for the C language API only), and the
length is modified to reflect the number of actual bytes in the name. A Boolean value that
indicates whether the network variable is mandatory or optional is returned. Language
resource string selectors and indices are returned for the network variable’s language-
dependent name and an additional info/comment string. An encoding of the modification
restrictions and array indicator is returned. A pointer to a byte array containing the optional
default value is returned if the default value is given (otherwise NULL is returned). Two
pointers to byte arrays containing the optional min and max overrides of the validation range
are returned if the validation range is overridden (otherwise NULL is returned). The pointer
to a length for each byte array precedes the byte array pointers. Your application must call
the LdrfFreeByteArray() function to free the returned byte array pointers when your
application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LONMARK Resource File API Reference Guide 111

LdrfGetFPTCPByAttributesEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPByAttributesEx(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort appliesTo,
 TUByte CPTSel, TUShort CPTIndex,
 PUShort pCPindex,
 LPSTR pCPName, PUShort pLength,
 PBool pMandatory,
 PUByte pResNmSel, PULong pResNmIndex,
 PUByte pResCmtSel, PULong pResCmtIndex,
 PUByte pCPTSel, PUShort pCPTIndex,
 PUByte pModifyArray,
 PUShort pByteArrayLen, PUByteArray *ppDefault,
 PUByteArray *ppValMin, PUByteArray *ppValMax,
 PUByteArray *ppInvalid)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTCPByAttributesEx(long pInfo,
 long FPTindex, long appliesTo,
 long CPTSel, long CPTIndex, long *pCPIndex,
 BSTR *pCPName, long *pMandatory,
 long *pResNmSel, long *pResNmIndex,
 long *pResCmtSel, long *pResCmtIndex,
 long *pModifyArray, BSTR *pDflt,
 BSTR *pValMin, BSTR *pValMax, BSTR *pValInvalid,
 long *returnCode)

Purpose

This function is identical to the LdrfFPTCPByAttributes() function except that it returns
an additional reference parameter for a byte array containing the default invalid value for
the configuration property type.

This function gets a functional profile's configuration property member record from a
functional profile template file that has been opened, using a matching algorithm rather
than the index of the configuration property. The file info, and the type (selector and index)
and the appliesTo value of the member configuration property must be specified. Each
configuration property either is declared to apply to a particular network variable, or to the
object as a whole. A configuration that applies to the object uses an appliesTo value of 0.
Otherwise, the index of the network variable is used. The matching algorithm treats a
configuration property that applies to the principal network variable as synonymous with a
configuration property that applies to the object as a whole. (For example, if the principal
network variable is index 1, and you are looking for a configuration property whose type is
<s>:<i> but you are not sure whether the configuration property applies to the object or to
the principal network variable—if you pass these values in to this function, using either
appliesTo=0 or appliesTo=1, the configuration property will be found.)

The configuration property index is returned. The programmatic name is returned in a
buffer, the length of the buffer must be passed in (for the C language API only), and the

112 LONMARK Resource File API Reference Guide

length is modified to reflect the number of actual bytes in the name. A Boolean value that
indicates whether the network variable is mandatory or optional is returned. Language
resource string selectors and indices are returned for the network variable’s language-
dependent name and an additional info/comment string. An encoding of the modification
restrictions and array indicator is returned. A pointer to a byte array containing the optional
default value is returned if the default value is given (otherwise NULL is returned). Three
pointers to byte arrays containing the optional min and max overrides of the validation range
and the optional invalid value are returned if the validation range and invalid value are
overridden (otherwise NULL is returned). The pointer to a length for each byte array
precedes the byte array pointers. Your application must call the LdrfFreeByteArray()
function to free the returned byte array pointers when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_TRUNC The string was truncated to fit the buffer.

LdrfSetFPTNV

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTNV(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVMemberNumber,
 LPCSTR NVName, TBool mandatory,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte NVTSel, TUShort NVTIndex,
 TUByte dirPollServ, TUShort byteArrayLen,
 PUByteArray pValMin, PUByteArray pValMax,
 PUByteArray pValInvalid)

COM Interface Prototype

LdrfFuncProf.SetFPTNV(long pInfo,
 long FPTindex, long NVMemberNumber,
 BSTR NVName, long mandatory,
 long resNmSel, long resNmIndex,
 long resCmtSel, long resCmtIndex,
 long NVTSel, long NVTIndex,
 long dirPollServ, BSTR valMin, BSTR valMax,
 long *returnCode)

Purpose

This function modifies a functional profile's network variable member record in a functional
profile template file that has been opened for editing. The file info, and the member number

LONMARK Resource File API Reference Guide 113

(starting from 1) of the member network variable must be specified, and the network
variable programmatic name, and resource string selectors and indices must all be specified.
After the programmatic name parameter is the Boolean mandatory parameter, indicating
whether the network variable is a mandatory or optional part of the functional profile.

The network variable’s type selector and index are also supplied, as is an encoding of the
direction, polledness, and default service type. Two pointers to byte arrays containing the
optional min and max overrides of the validation range are supplied if the validation range is
overridden (otherwise NULL is supplied). A byte array length is also passed in. Your
application must call the LdrfFreeByteArray() function to free the returned byte array
pointers when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that member number was found.

LDRF_ERR_DUPLICATE The name key is already in use by another network variable
in the functional profile.

LdrfSetFPTNVEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTNVEx(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVMemberNumber,
 LPCSTR NVName, TBool mandatory,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte NVTSel, TUShort NVTIndex,
 TUByte dirPollServ, TUShort byteArrayLen,
 PUByteArray pValMin, PUByteArray pValMax
 PUByteArray pValInvalid)

COM Interface Prototype

LdrfFuncProf.SetFPTNVEx(long pInfo,
 long FPTindex, long NVMemberNumber,
 BSTR NVName, long mandatory,
 long resNmSel, long resNmIndex,
 long resCmtSel, long resCmtIndex,
 long NVTSel, long NVTIndex,
 long dirPollServ, BSTR valMin, BSTR valMax, BSTR ValInvalid,
 long *returnCode)

114 LONMARK Resource File API Reference Guide

Purpose

This function is identical to the LdrfSetFPTNV() function except that it takes an additional
pointer to a byte array containing the default invalid value for the network variable type.

This function modifies a functional profile's network variable member record in a functional
profile template file that has been opened for editing. The file info, and the index (starting
from 1) of the member network variable must be specified, and the network variable
programmatic name, and resource string selectors and indices must all be specified. After
the programmatic name parameter is the mandatory Boolean parameter, indicating
whether the network variable is a mandatory or optional part of the functional profile.

The network variable’s type selector and index are also supplied, as is an encoding of the
direction, polledness, and default service type. Three pointers to byte arrays containing the
optional min and max overrides of the validation range and the optional invalid value are
supplied if the validation range or invalid value are overridden (otherwise NULL is
supplied). A byte array length is also passed in. Your application must call the
LdrfFreeByteArray() function to free the returned byte array pointers when your
application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LDRF_ERR_DUPLICATE The name key is already in use by another network variable
in the functional profile.

LdrfSetFPTNVEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTNVEx2(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort NVMemberNumber,
 LPCSTR NVName, TBool mandatory,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte NVTSel, TUShort NVTIndex,
 TUByte dirPollServ, TUShort byteArrayLen,
 PUByteArray pValMin, PUByteArray pValMax
 PUByteArray pValInvalid, TUShort flags)

LONMARK Resource File API Reference Guide 115

Purpose

This function is identical to the LdrfSetFPTNVEx() function, with the addition of a new
flags parameter. The flags parameter is reserved for future use and the value must be set
to zero when calling the LdrfSetFPTNVEx 2() function.

This function modifies a functional profile's network variable member record in a functional
profile template file that has been opened for editing. The file info, and the index (starting
from 1) of the member network variable must be specified, and the network variable
programmatic name, and resource string selectors and indices must all be specified. After
the programmatic name parameter is the mandatory Boolean parameter, indicating
whether the network variable is a mandatory or optional part of the functional profile.

The network variable’s type selector and index are also supplied, as is an encoding of the
direction, polledness, and default service type. Three pointers to byte arrays containing the
optional min and max overrides of the validation range and the optional invalid value are
supplied if the validation range or invalid value are overridden (otherwise NULL is
supplied). A byte array length is also passed in. Your application must call the
LdrfFreeByteArray() function to free the returned byte array pointers when your
application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that index was found.

LDRF_ERR_DUPLICATE The name key is already in use by another network variable
in the functional profile.

LdrfChangeFPTNVMemberNumber

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfChangeFPTNVMemberNumber(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort oldMemberNumber,
 TUShort newMemberNumber)

COM Interface Prototype

LdrfGeneral2.Change FPTNVMemberNumber(long *pInfo,
 long FPTindex, long oldMemberNumber,
 long newMemberNumber, long *returnCode)

116 LONMARK Resource File API Reference Guide

Purpose

This function changes the member number of a network variable in a functional profile. The
member number must be unique; attempting to duplicate an existing member number
returns LDRF_ERR_DUPLICATE.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no network variable
member of that member number was found.

LDRF_ERR_DUPLICATE An attempt was made to duplicate an existing member
number.

LdrfSetFPTCP

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTCP(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPMemberNumber,
 TUShort appliesTo, LPCSTR CPName, TBool mandatory,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte CPTSel, TUShort CPTIndex,
 TUByte modifyArray,
 TUShort byteArrayLen, PUByteArray pDefault,
 PUByteArray pValMin, PUByteArray pValMax
 PUByteArray pValInvalid)

COM Interface Prototype

LdrfFuncProf.SetFPTCP(long pInfo, long FPTindex,
 long CPMemberNumber,
 long appliesTo, BSTR CPName, long mandatory,
 long resNmSel, long resNmIndex,
 long resCmtSel, long resCmtIndex,
 long CPTSel, long CPTIndex,
 long modifyArray, BSTR dflt,
 BSTR valMin, BSTR valMax, long *returnCode)

Purpose

This function modifies a functional profile's configuration property member record in a
functional profile template file that has been opened for editing. The file info, and the
member number (starting from 1) of the member configuration property must be specified.
The appliesTo parameter is set to zero if the configuration property applies to the whole
functional block. It is set to the index of the network variable within the functional profile’s
member network variables if the functional profile is defined in an functional profile

LONMARK Resource File API Reference Guide 117

template file with file format version 1 or 2, and it is set to this network variable’s member
number if the profile is defined in an functional profile template file with file format version
3 or better. In the latter case, which supports inheriting functional profiles, you can OR a
value of 0x8000 with the member number to indicate that the CP applies to a network
variable (by its member number) that is defined in the inherited profile, rather than the one
containing the CP. The configuration property programmatic name and resource string
selectors and indices must all be specified. After the programmatic name parameter is a
mandatory Boolean parameter that indicates whether the configuration property is
mandatory or optional in the functional profile.

The configuration property’s type selector and index are supplied, as is an encoding of the
modification restrictions and array indication. A pointer to a byte array containing the
optional default value is supplied if desired, otherwise NULL is supplied. Two pointers to
byte arrays containing the optional min and max overrides of the validation range are
supplied, if the validation range is overridden (otherwise NULL is supplied). A byte array
length is also passed in. Your application must call the LdrfFreeByteArray() function to
free the returned byte arrays when your application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that member number was found.

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property in the functional profile.

LdrfSetFPTCPEx

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTCPEx(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPMemberNumber,
 TUShort appliesTo, LPCSTR CPName, TBool mandatory,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte CPTSel, TUShort CPTIndex,
 TUByte modifyArray,
 TUShort byteArrayLen, PUByteArray pDefault,
 PUByteArray pValMin, PUByteArray pValMax
 PUByteArray pValInvalid)

118 LONMARK Resource File API Reference Guide

COM Interface Prototype

LdrfFuncProf.SetFPTCPEx(long pInfo, long FPTindex,
 long CPMemberNumber,
 long appliesTo, BSTR CPName, long mandatory,
 long resNmSel, long resNmIndex,
 long resCmtSel, long resCmtIndex,
 long CPTSel, long CPTIndex,
 long modifyArray, BSTR dflt,
 BSTR ValMin, BSTR ValMax, BSTR ValInvalid,
 long *returnCode)

Purpose

This function is identical to the LdrfSetFPTCP() function except that it takes an additional
pointer to a byte array containing the default invalid value for the configuration property
type.

This function modifies a functional profile's configuration property member record in a
functional profile template file that has been opened for editing. The file info, and the index
(starting from 1) of the member configuration property must be specified. The appliesTo
parameter is set to zero if the configuration property applies to the whole functional block. It
is set to the index of the network variable within the functional profile’s member network
variables if the functional profile is defined in an functional profile template file with file
format version 1 or 2, and it is set to the this network variable’s member number if the
profile is defined in an functional profile template file with file format version 3 or better. In
the latter case, which supports inheriting functional profiles, you can OR a value of 0x8000
with the member number to indicate that the CP applies to a network variable (by its
member number) that is defined in the inherited profile, rather than the one containing the
CP. The configuration property programmatic name and resource string selectors and
indices must all be specified. After the programmatic name parameter is a mandatory
Boolean parameter that indicates whether the configuration property is mandatory or
optional in the functional profile.

The configuration property’s type selector and index are supplied, as is an encoding of the
modification restrictions and array indication. A pointer to a byte array containing the
optional default value is supplied if desired, else NULL is supplied. Three pointers to byte
arrays containing the optional min and max overrides of the validation range and the
optional invalid value are supplied if the validation range or invalid value are overridden
(otherwise NULL is supplied). A byte array length is also passed in. Your application must
call the LdrfFreeByteArray() function to free the returned byte arrays when your
application is done with them.

Return Values
LDRF_ERR_FILE_INFO The file info structure content was not valid.
LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.
LDRF_ERR_SYS System error, for example due to exceeding available file

handles, disk space, or memory.
LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a

valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property in the functional profile.

LONMARK Resource File API Reference Guide 119

LdrfSetFPTCPEx2

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTCPEx(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPMemberNumber,
 TUShort appliesTo, LPCSTR CPName, TBool mandatory,
 TUByte resNmSel, TULong resNmIndex,
 TUByte resCmtSel, TULong resCmtIndex,
 TUByte CPTSel, TUShort CPTIndex,
 TUByte modifyArray,
 TUShort byteArrayLen, PUByteArray pDefault,
 PUByteArray pValMin, PUByteArray pValMax
 PUByteArray pValInvalid, TUShort flags)

Purpose

This function is identical to the LdrfSetFPTCPEx() function, with the addition of a new
flags parameter. The flags parameter is reserved for future use and the value must be set
to zero when calling the LdrfSetFPTCPEx 2() function.

This function modifies a functional profile's configuration property member record in a
functional profile template file that has been opened for editing. The file info, and the index
(starting from 1) of the member configuration property must be specified. The appliesTo
parameter is set to zero if the configuration property applies to the whole functional block. It
is set to the index of the network variable within the functional profile’s member network
variables if the functional profile is defined in an functional profile template file with file
format version 1 or 2, and it is set to the this network variable’s member number if the
profile is defined in an functional profile template file with file format version 3 or better. In
the latter case, which supports inheriting functional profiles, you can OR a value of 0x8000
with the member number to indicate that the CP applies to a network variable (by its
member number) that is defined in the inherited profile, rather than the one containing the
CP. The configuration property programmatic name and resource string selectors and
indices must all be specified. After the programmatic name parameter is a mandatory
Boolean parameter that indicates whether the configuration property is mandatory or
optional in the functional profile.

The configuration property’s type selector and index are supplied, as is an encoding of the
modification restrictions and array indication. A pointer to a byte array containing the
optional default value is supplied if desired, else NULL is supplied. Three pointers to byte
arrays containing the optional min and max overrides of the validation range and the
optional invalid value are supplied if the validation range or invalid value are overridden
(otherwise NULL is supplied). A byte array length is also passed in. Your application must
call the LdrfFreeByteArray() function to free the returned byte arrays when your
application is done with them.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

120 LONMARK Resource File API Reference Guide

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that index was found.

LDRF_ERR_DUPLICATE The name key is already in use by another configuration
property in the functional profile.

LdrfChangeFPTCPMemberNumber

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfChangeFPTCPMemberNumber(PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort oldMemberNumber,
 TUShort newMemberNumber)

COM Interface Prototype

LdrfGeneral2.ChangeFPTCPMemberNumber(long *pInfo,
 long FPTindex, long oldMemberNumber,
 long newMemberNumber, long *returnCode)

Purpose

This function changes the member number of a configuration property in a functional profile.
The member number must be unique; attempting to duplicate an existing member number
returns LDRF_ERR_DUPLICATE.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that member number was found.

LDRF_ERR_DUPLICATE An attempt was made to duplicate an existing member
number.

LdrfSetFPTCPArrayDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTCPArrayDetails (PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPIndex,
 TUShort minArraySize, TUShort maxArraySize)

LONMARK Resource File API Reference Guide 121

COM Interface Prototype

LdrfFuncProfTmplt.SetFPTCPArrayDetails (long pInfo,
 long FPTindex, long CPIndex, long minArraySize
 long maxArraySize, long *returnCode)

Purpose

This function sets the minimum and maximum size of the specified configuration property
array for a functional profile. This function is only available on version 4 type files and later.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that member number was found.

LDRF_ERR_VERSION The function was called on a pre-version 4 type file.

LdrfGetFPTCPArrayDetails

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTCPArrayDetails (PLdrfFileInfo pInfo,
 TUShort FPTindex, TUShort CPIndex,
 PUShort minArraySize, PUShort maxArraySize,
 Pbool pDetailsAreDefaults)

COM Interface Prototype

LdrfFuncProfTmplt.GetFPTCPArrayDetails (long pInfo,
 long FPTindex, long CPIndex, long *pMinArraySize
 long *pMaxArraySize, long *pDetailsAreDefaults,
 long *returnCode)

Purpose

This function gets the minimum and maximum size of the specified configuration property
array for a functional profile. This function is only available on version 4 type files and later.
If the values obtained are the automatically generated default values, pDetailsAreDefaults
will be set toTrue. If the values are obtained from the type file, this value is set to False.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

122 LONMARK Resource File API Reference Guide

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if it was a
valid functional profile index, then no configuration property
member of that member number was found.

LDRF_ERR_VERSION The function was called on a pre-version 4 type file.

LdrfGetFPTInherit

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTInherit (PLdrfFileInfo pInfo,
 PUSHORT pInherit,
 TUSHORT index)

COM Interface Prototype

LdrfGeneral2.GetFPTInherit(long pInfo,
 long index,
 long *pInherit,
 long *returnCode)

Purpose

This function gets the value of the functional profile Inherit flag. If the functional profile
template file version does not support inheritance, a value of FALSE is returned.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE The file has not been completely created.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LdrfSetFPTInherit

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTInherit (PLdrfFileInfo pInfo,
 TUSHORT index)

COM Interface Prototype

LdrfGeneral2.SetFPTInherit(long pInfo,
 long index,
 long *returnCode)

LONMARK Resource File API Reference Guide 123

Purpose

This function sets the functional profile Inherit flag. By default, this flag is not set.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE The file has not been completely created.

LDRF_ERR_FMT_VERSION The format version of the resource file does not support
inheritance.

LdrfClearFPTInherit

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfClearFPTInherit (PLdrfFileInfo pInfo,
 TUSHORT index)

COM Interface Prototype

LdrfGeneral2.ClearFPTInherit(long pInfo,
 long index,
 long *returnCode)

Purpose

This function is called to clear the functional profile Inherit flag. By default, this flag is not
set.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_INCOMPLETE The file has not been completely created.

LdrfSetFPTObsolete

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSetFPTObsolete(PLdrfFileInfo pInfo, TUShort index)

COM Interface Prototype

LdrfGeneral2.SetFPTObsolete(long pInfo, long index, long *returnCode)

124 LONMARK Resource File API Reference Guide

Purpose

This function marks the specified functional profile as obsolete. Marking a functional profile
as obsolete does not affect the processing of the file. It is up to the calling applicatin to
interpret the obsolete mark. To edit a functional profile and leave the obsolete mark intact,
you must check for the mark using LdrfGetFPTObsolete() before making any changes and
call this function after you are done editing.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NO_ACCESS The file wasn't opened in edit mode.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_NOT_FOUND No functional profile with that index was found, or if adding,
the new index is not correct (must be contiguous).

LDRF_ERR_FMT_VERSION The resource file format does not support the obsolete mark.
The obsolete mark is supported in functional profile template
files of version 3 or later.

LdrfGetFPTObsolete

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetFPTObsolete(PLdrfFileInfo pInfo, TUShort index, PboolByte
 pObsolete)

COM Interface Prototype

LdrfGeneral2.GetFPTObsolete(long pInfo, long index,
 long *pObsolete, long *returnCode)

Purpose

This function checks for the obsolete flag on the specified functional profile. Marking a
functional profile as obsolete does not affect the processing of the file. It is up to the calling
application to interpret the obsolete mark. This function will return FALSE if called on a
resource file that does not support the obsolete mark; no error will be returned.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No functional profile template with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_EMPTY_RECORD The function attempted to access an empty record. This
error is only returned if the LdrfEnableEmptyEntries()
function has been called.

LONMARK Resource File API Reference Guide 125

LdrfFindEmptyFPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfFindEmptyFPT(PLdrfFileInfo pInfo, PUShort pIndex)

COM Interface Prototype

LdrfMiscFns1.FindEmptyFPT(long pInfo, long *pIndex,
 long *returnCode)

Purpose

This function returns the first empty functional profile index. If there are no empty
functional profile records, this function returns n+1, where n is the number of functional
profile records in the file.

Return Values

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NOT_FOUND No empty record index is available (only occurs if file is
full).

LdrfDeleteFPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfDeleteFPT(PLdrfFileInfo pInfo, TUShort index)

COM Interface Prototype

LdrfMiscFns1.DeleteFPT (long pInfo, long index, long *returnCode)

Purpose

This function deletes a functional profile template. Deleted resources do not consume any
file data space. They only have NULL entries in the resource key-access directories.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_NOT_FOUND No functional profile with that index was found.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

126 LONMARK Resource File API Reference Guide

LdrfValidateFPT

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfValidateFPT(PLdrfFileInfo pInfo, TUShort Index)

COM Interface Prototype

LdrfMiscFns1.ValidateFPT(long pInfo, long index, long *returnCode)

Purpose

This function returns the status of a functional profile. See Return Values for more
information.

Return Values

LDRF_ERR_PARAM Incorrect parameters supplied.

LDRF_ERR_NOT_FOUND The specified functional profile was not found.

LDRF_ERR_INTERNAL Internal error.

LDRF_ERR_NONE The functional profile was found and is not empty.

LDRF_ERR_EMPTY_RECORD The functional profile is an empty record (i.e. it was
deleted). This error code is only be returned if the
LdrfEnableEmptyEntries() function was called on the
type file.

LONMARK Resource File API COM Interface

The LONMARK Resource File API COM interface provides a standard Windows COM
interface to the resource file API functions. The COM interface provides a programming
language interface to the API functions on Win32 platforms. The functions are described in
the API reference; this topic describes general attributes of the functions. Windows
applications can use either the C-language interface or the language-independent COM
interface. Both interfaces offer the same functionality.

The COM interfaces are all named to make matching with the ANSI C API interface easy,
adding the COM interface object and deleting the initial "Ldrf" portion of the function names.
For example, the LdrfCheckHeaderCRC() function has a corresponding COM interface
object and method named LdrfCRC.CheckHeaderCRC.

There is also a correspondence between the parameter lists of the ANSI C interfaces and the
parameter lists of the COM interfaces. The ANSI C functions all return an error code chosen
from an enumeration. Since the COM interfaces all return a value dealing with the COM
interface itself, the error code return value is returned via an additional parameter at the
end of the parameter list of the COM interface. This additional parameter is a pointer to a
long value that contains the return value after the COM interface function returns. For
example, the following interfaces describe the ANSI C and COM interfaces, respectively, for
the LdrfCheckHeaderCRC() function:

LONMARK Resource File API Reference Guide 127

ANSI C: LdrfCheckHeaderCRC (PLdrfFileInfo pInfo)

COM: CheckHeaderCRC (long pInfo, long *pReturnCode)

All other interface parameters are as similar as possible in number, order, name, and
meaning between the ANSI C functional interfaces and the COM interfaces. The COM
interface only allows certain types as described in the API reference. Following is a
summary of the key differences:

 The ANSI C LPCSTR and LPSTR types are replaced with the COM BSTR type. The
BSTR type is a string of 16-bit characters, one character per 16-bit word. BSTR
arguments to be passed into a procedure must be allocated and freed by the caller.
BSTR arguments returned by a procedure are allocated using SysAllocString() by the
callee, and must be freed by the caller using SysFreeString().

 Writable strings in the API function arguments are accompanied by length parameters.
In the COM interfaces, these length parameters are unnecessary and do not exist.

 All integer values such as TULong, TUShort, and TBool are converted to and from the
long data type in the COM interface.

 The pointer to the PLdrfFileInfo file information structure and the pointer to the
PLdrfTypeTree * type tree structure are converted to and from the long data type in
the COM interface.

 Pointers to byte arrays are passed as BSTRs containing the hex encoding of the bytes.
For example, a three byte string containing '0x01,0x02,0x03' becomes the following six
character BSTR: "010203". On the input side, the COM interfaces support optional
spaces between each byte. For example, the "01 02 03" BSTR would be equivalent to the
previous BSTR

 On the output side, the COM interfaces return strings with the bytes separated by
spaces.

Utility Functions
You can use the utility functions discussed in this section with many LONMARK Resource File
API operations, but they are not required in the general case. For example, you can use the
LdrfCheckHeaderCRC() function to enforce an explicit CRC check, but the API itself
automatically verifies any checksums at the appropriate moments (for example, when
opening a type file).

LdrfCheckHeaderCRC

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCheckHeaderCRC(PLdrfFileInfo pInfo)

128 LONMARK Resource File API Reference Guide

COM Interface Prototype

LdrfGeneral.CheckHeaderCRC(long pInfo, long *returnCode)

Purpose

This function checks the CRC for a resource file header. The resource file must be open. The
ldrfFileInfo structure pointer is passed in.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_CRC The file header did not pass the CRC check.

LdrfCheckDataCRC

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCheckDataCRC(PLdrfFileInfo pInfo)

Purpose

This function checks the CRC for resource file data. The resource file must be open. The
ldrfFileInfo structure pointer is passed in.

Return Values

LDRF_ERR_FILE_INFO The file info structure content was not valid.

LDRF_ERR_SYS System error, for example due to exceeding available file
handles, disk space, or memory.

LDRF_ERR_CRC The file data did not pass the CRC check.

LdrfCheckCRC

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfCheckCRC(PUByteArray pBlock, TULong size, TUShort oldCRC)

COM Interface Prototype

LdrfGeneral.CheckCRC(BSTR pBlock, long oldCRC, long *returnCode)

LONMARK Resource File API Reference Guide 129

Purpose

This function computes the CRC on a block of data and compares it to a known CRC value.
The starting point of the block of bytes and the size of the block of bytes (as a number of
bytes) is passed in. You can use this function to verify that an in memory copy of a resource
file is valid. To use this function call the function with a pointer to the first byte following
the data CRC, and specify the size of the data block (subtracting the two bytes for the CRC
itself).

Return Values

LDRF_ERR_CRC The data did not pass the CRC check.

LdrfGetDRFAPIErrorString

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetDRFAPIErrorString(TldrfErrCodes errCode, LPSTR pErrorString,
 PUShort pLength)

COM Interface Prototype

LdrfMistFns1.GetDRFAPIErrorString(long errCode, BSTR *pErrorString,
long *returnCode)

Purpose

This function returns the string associated with a specified LONMARK Resource File API
error code. Set pErrorLength to the length of the string buffer available at pErrorString
(for the C language API only); pErrorLength will be set to the actuall length of the error
string when the string is returned. If the value passed in has no associated error message,
pString will be set to “Unknown error code [DRF#<error number>]”.

Alphanumeric error descriptions returned by this function are not localized. Error
descriptions are always provided in (US) English.

Return Values

LDRF_ERR_TRUNC The error code string is longer than the size specified by
pErrorLength. The error code is truncated to fit.

LDRF_ERR_PARAM An invalid parameter was specified.

LdrfGetDRFAPIVersion

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfGetDRFAPIVersion(PUShort pMajor, PUShort pMinor, PUShort pFix);

130 LONMARK Resource File API Reference Guide

COM Interface Prototype

LdrfMiscFns1.GetDRFAPIVersion(long *pMajor, long *pMinor,
long *pFix, long *returnCode)

Purpose

This function returns the version number of the LONMARK Resource File API. A LONMARK
Resource File API version # might be “2.21.03”, where the “2” is the major version number,
“.21” is the minor version number, and “03” is the build number. The minor version number
is incremented when minor improvements are made to capability or interface. The minor
version number may be incremented to the next ten (for example from “.10” or “.11” to “.20”)
when the improvement is “more significant”. The build number is reset to “00” when the
minor or major number is incremented, and the build number is incremented when there is
any modification to the code base.

Return Values

LDRF_ERR_NONE

LdrfSupportedFormats

 LCADRF32.DLL COM Interface LDRF32R.DLL

C Language API

LdrfSupportedFormats(TLdrfFileType fileType,
 PUByte pMajFmtLow, PUByte pMajFmtHigh)

COM Interface Prototype

LdrfGeneral2.SupportedFormats(TLdrfFileType fileType,
 long *pMajFmtLow, long *pMajFmtHigh,
 long *returnCode)

Purpose

For a given file type, this function returns the low and high supported version numbers,
indicating the range of format-versions this LONMARK Resource File API supports for the
requested file type.

Return Values

LDRF_ERR_CRC The data did not pass the CRC check.

	Table of Contents
	Introduction
	What’s New in this Release
	Installing the LONMARK Resource File API
	Catalog Functions
	LdrfOpenCatalog
	LdrfGetCatalogInfo
	LdrfCloseCatalog
	LdrfCatalogAddDir
	LdrfCatalogGetDir
	LdrfCatalogRmvDir
	LdrfCatalogRefresh
	LdrfCatalogAddFile
	LdrfCatalogGetFile
	LdrfCatalogRmvFile
	LdrfSearchCatalog
	LdrfCatalogDependencyCode
	LdrfMatchProgID

	General File Functions
	LdrfOpenFile
	LdrfEnableExtendedSNVTID
	LdrfEditFile
	LdrfGetFileHdrInfo
	LdrfSetFileHdrInfo
	LdrfGetFileVersion
	LdrfSetFileVersion
	LdrfCloseFile
	LdrfGetLangFileInfo
	LdrfExtendedDataTypeAware
	LdrfConvertFile
	LdrfPurgeFile
	LdrfEditFileVer
	LdrfEnableEmptyEntries

	Language File Functions
	LdrfSetLangFileInfo
	LdrfGetResourceString
	LdrfDeleteResourceString
	LdrfSetASCIIResource
	LdrfFindEmptyResourceString
	LdrfValidateResourceString
	LdrfGetNumLanguages
	LdrfGetLanguageInfo
	LdrfGetLanguageKeyFromLocale
	LdrfGetLanguageKeyFromMSLocaleID
	LdrfGetLanguageKeyFromExtension

	String Service Functions
	LdrfStartStringService
	LdrfAddStringServiceLocale
	LdrfStringServiceRequest
	LdrfStopStringService

	Type File Functions
	Type File Access Functions
	LdrfGetTypeFileInfo
	LdrfSetTypeFileInfo

	Enum Set Access Functions for a Type File
	LdrfChangeSelectedEnumSetFile
	LdrfChangeSelectedEnumSetTag
	LdrfDeleteEnumMemberByIndex
	LdrfSelectEnumSet
	LdrfSelectEnumSetByTag
	LdrfSelectEnumSetByFile
	LdrfSelectNewEnumSet
	LdrfDeleteEnumSet
	LdrfGetEnumMember
	LdrfGetEnumValue
	LdrfGetEnumMemberCount
	LdrfGetEnumMemberByIndex
	LdrfSetEnumMember
	LdrfValidateEnumSet

	NVT Access Functions for a Type File
	LdrfGetNVT
	LdrfGetNVTEx
	LdrfGetNVTByName
	LdrfGetNVTByNameEx
	LdrfLookupTypeNameString
	LdrfSetNVT
	LdrfSetNVTEx
	LdrfSetNVTObsolete
	LdrfGetNVTObsolete
	LdrfFindEmptyNVT
	LdrfDeleteNVT
	LdrfValidateNVT

	CPT Access Functions for a Type File
	LdrfGetCPT
	LdrfGetCPTEx
	LdrfGetCPTEx2
	LdrfGetCPTByName
	LdrfGetCPTByNameEx
	LdrfGetCPTByNameEx2
	LdrfFreeByteArray
	LdrfSetCPT
	LdrfSetCPTEx
	LdrfSetCPTEx2
	LdrfSetCPTObsolete
	LdrfGetCPTObsolete
	LdrfFindEmptyCPT
	LdrfDeleteCPT
	LdrfValidateCPT

	Type Tree Functions
	LdrfFreeTypeTree
	LdrfGetNextSupportedNVTType
	LdrfGetTypeNameString
	LdrfNewTypeTreeNode
	LdrfResolveAllTypeTreeRefs
	LdrfSetScalarDetails
	LdrfSetScalar64Details
	LdrfSetScalarInvalidValue
	LdrfSetScalar64InvalidValue
	LdrfSetFloatDetails
	LdrfSetDoubleFloatDetails
	LdrfSetBitfieldDetails
	LdrfSetEnumDetails
	LdrfSetArrayDetails
	LdrfSetStructUnionDetails
	LdrfSetReferenceDetails
	LdrfScanTypeTree
	LdrfFindTypeTreeNode
	LdrfReadTypeTreeNode
	LdrfGetScalarDetails
	LdrfGetScalar64Details
	LdrfGetScalarInvalidValue
	LdrfGetScalar64InvalidValue
	LdrfGetFloatDetails
	LdrfGetDoubleFloatDetails
	LdrfGetBitfieldDetails
	LdrfGetEnumDetails
	LdrfGetArrayDetails
	LdrfGetStructUnionDetails
	LdrfGetReferenceDetails
	LdrfGraftReference
	LdrfApplyValOverride
	LdrfApplyValOverrideEx

	Functional Profile Template File Functions
	LdrfGetFPTFileInfo
	LdrfSetFPTFileInfo
	LdrfGetFPT
	LdrfGetFPTEx
	LdrfGetFPTByName
	LdrfGetFPTByNameEx
	LdrfGetFPTByKey
	LdrfGetFPTByKeyEx
	LdrfSetFPT
	LdrfSetFPTEx
	LdrfGetFPTNV
	LdrfGetFPTNVEx
	LdrfGetFPTNVEx2
	LdrfGetFPTCP
	LdrfGetFPTCPEx
	LdrfGetFPTCPEx2
	LdrfGetFPTNVMemberNumber
	LdrfGetFPTCPMemberNumber
	LdrfGetFPTNVIndex
	LdrfGetFPTCPIndex
	LdrfGetFPTCPByAttributes
	LdrfGetFPTCPByAttributesEx
	LdrfSetFPTNV
	LdrfSetFPTNVEx
	LdrfSetFPTNVEx2
	LdrfChangeFPTNVMemberNumber
	LdrfSetFPTCP
	LdrfSetFPTCPEx
	LdrfSetFPTCPEx2
	LdrfChangeFPTCPMemberNumber
	LdrfSetFPTCPArrayDetails
	LdrfGetFPTCPArrayDetails
	LdrfGetFPTInherit
	LdrfSetFPTInherit
	LdrfClearFPTInherit
	LdrfSetFPTObsolete
	LdrfGetFPTObsolete
	LdrfFindEmptyFPT
	LdrfDeleteFPT
	LdrfValidateFPT

	LONMARK Resource File API COM Interface
	Utility Functions
	LdrfCheckHeaderCRC
	LdrfCheckDataCRC
	LdrfCheckCRC
	LdrfGetDRFAPIErrorString
	LdrfGetDRFAPIVersion
	LdrfSupportedFormats

