

EnOcean

Rich Blomseth

Director of Product Management EnOcean Edge Inc.

rich.blomseth@enocean.com https://www.linkedin.com/in/richblomseth

Creating Sustainable Buildings with Smart Spaces and Open Web Services

Renewable Energy

Smart Cities Streetlighting Commercial & Residential Buildings

Internet of Things

Motivation for Smart Spaces

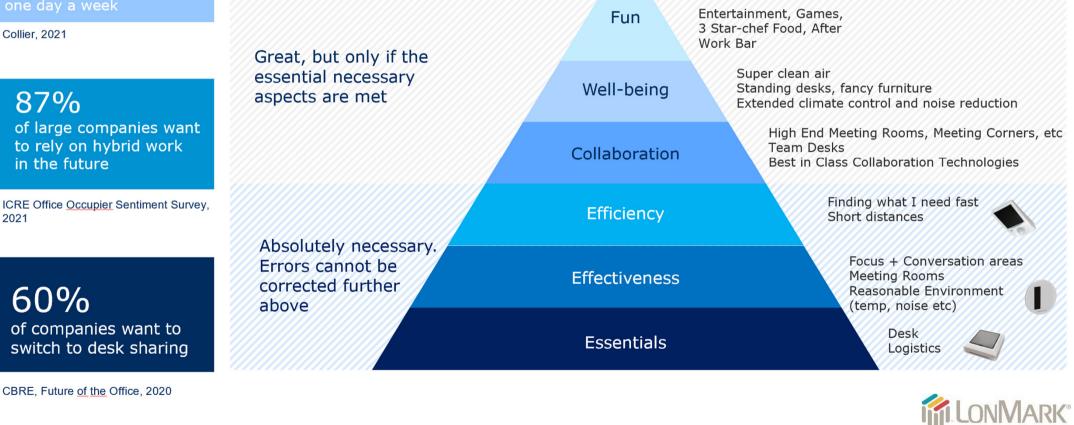
Building Operation

For building owners, operation represents 42% of total building cost over its lifetime (IBM Research 2016)

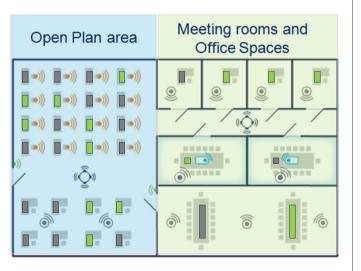
- Smart Space solutions make buildings flexible and adaptable
- Smart Space solutions make employees more effective
- Smart Space solutions increase energy efficiency and sustainability
- Smart Space solutions provide significant cost savings

Building Operation

Smart spaces provide a healthy work environment and enable flexible working schemes – they make employees more effective, improve satisfaction and allow optimized utilization of buildings


- Space utilization monitoring for optimizing area usage
- Healthy work environments for employee comfort
- Service on demand (instead of on schedule) for highest work efficiency

Workplace Trends


8 out of 10 work from home at least

Collier, 2021

Example: Shared Spaces with Utilization Monitoring

Office space is expensive and limited – shared, flexible usage maximizes the value of the available office space

- Most new office buildings contain shared working environments
- Utilization monitoring identifies available working and meeting areas
- Space utilization metrics allow optimization of area usage

Economic and Ecologic Benefits of Shared Spaces

Shared office models with utilization monitoring allow reduction of required office space by up to 25% – EnOcean desk utilization sensors provide the required data

² E-Shelter 2021, www.e-shelter.io

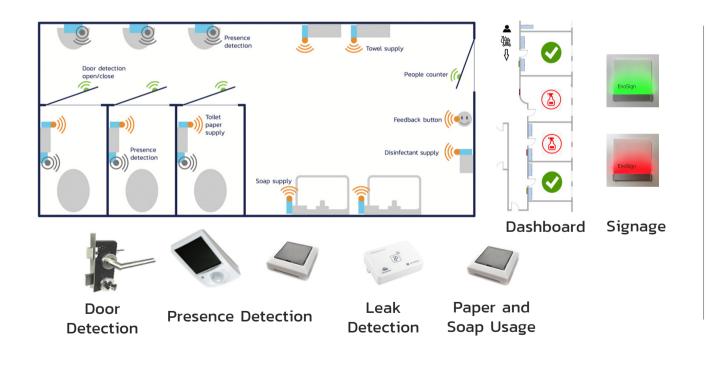
³ Cost estimate, strongly depends on system provider (application, desk <u>sensor</u>, infrastructure, <u>operation</u>): 13 sgm /employee according to <u>www.servcorp.com.au</u>, 50% of desks are shared and equipped with a sensor.

Example: Healthy Environments

Healthy environments are a key concern for employees – Information and control of temperature, humidity and air quality improves employee efficiency

- Temperature is one of the most common cause for service calls in office areas
- Air quality directly affects work efficiency
- Continuous monitoring and control required for employee satisfaction and efficiency

Economic and Health Benefits of Air Quality Monitoring


Healthy and comfortable environments make employees more effective and reduce absence – employee awareness and expectation has strongly increased during the Covid pandemic

Example: Smart Cleaning

Customers perceive cleanliness as most important sign of a well managed building – cleaning service is labor-intensive and should be optimized according to actual demand

- Cleaning is still largely executed according to agreed schedules
- Variations of actual usage (events, holidays, etc.) are often not considered
- Cleaning according to actual demand can significantly improve customer satisfaction and reduce cost

Economic and Ecologic Benefits of Smart Cleaning

Demand-based cleaning enables cost reduction and ensures compliance with agreed service levels – savings of water, plastics and detergents increase sustainability

¹ € 8,080 /4,000 sqm /month (5x per week, <u>www.desomax.de</u>) x 13 sqm /employee (<u>www.servcorp.com.au</u>) ² See APPENDIX, based on numbers from <u>www.soobr.com</u>

³ See APPENDIX, €13,639 IoT cost / €36,820 time savings x 12 months (Soobr 2022)

- Demand-based cleaning provides a consistent and transparent service level
- Clean environments are a key indicator for well managed buildings
- Positive ecological impact due to reduced utilization of water and detergent
- ROI achieved within months

Example: Building Energy Usage Optimization

Building energy consumption can be reduced using building analytics applications that combine HVAC system usage information with office space usage information

- 28% of global carbon emissions are from buildings
- 40% of office space is unused in offices daily but energy use remains consistent
- 5% improvement in energy efficiency is possible by optimizing HVAC control using information from Smart Spaces

Smart Spaces Benefits Summary

S

Based on

100,000 employees

DESK SHARING - € 200m p.a. - ROI 2 weeks

The killer application because of awesome monetary & ecological benefits (space & resource savings) – energy harvesting desk sensors are essential for sustainable solutions

AIR QUALITY IMPROVEMENT - € 13m p.a. - ROI 6 months

Air quality monitoring reduces employee sick leave and ensures pandemic compliance (CO2 indicates possible virus load) – improving employee efficiency further decreases ROI time

SMART CLEANING - € 3m p.a. - ROI 4 months

Cost reduction, service transparency and resource savings (water, plastics and detergents)

CO2 REDUCTION - € 2.6m p.a. - ROI 4 years

40% of global CO2 emissions are caused by buildings – energy harvesting sensors are essential for energy saving and provide better ROI time that replacing the building envelope

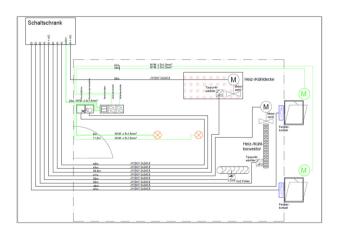
Sensor Data Required for Smart Spaces

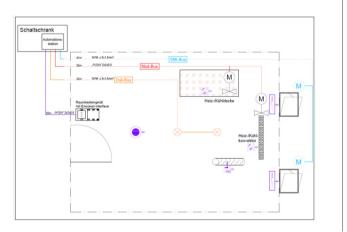
Smart Spaces require relevant data in real time and with minimum setup and maintenance effort – energy harvesting sensors can provide this data

- Relevant information on utilization and operation
- Quick installation and retrofit by tenants into existing buildings
- Maintenance-free operation

Wireless Sensor Solutions for Smart Spaces

Smart spaces must be flexible and easily adaptable to changing usage conditions – wireless sensor solutions can be easily deployed and quickly relocated


- Offices are increasingly designed for shared usage
- Support for different usage scenarios is required
- Quick and easy adaption is essential


Benefits of Wireless Infrastructure for Smart Spaces

Smart spaces require a data infrastructure to transport sensor data to the energy optimization and space allocation applications – wireless transport reduces overhead

Conventional (fully-wired) Infrastructure

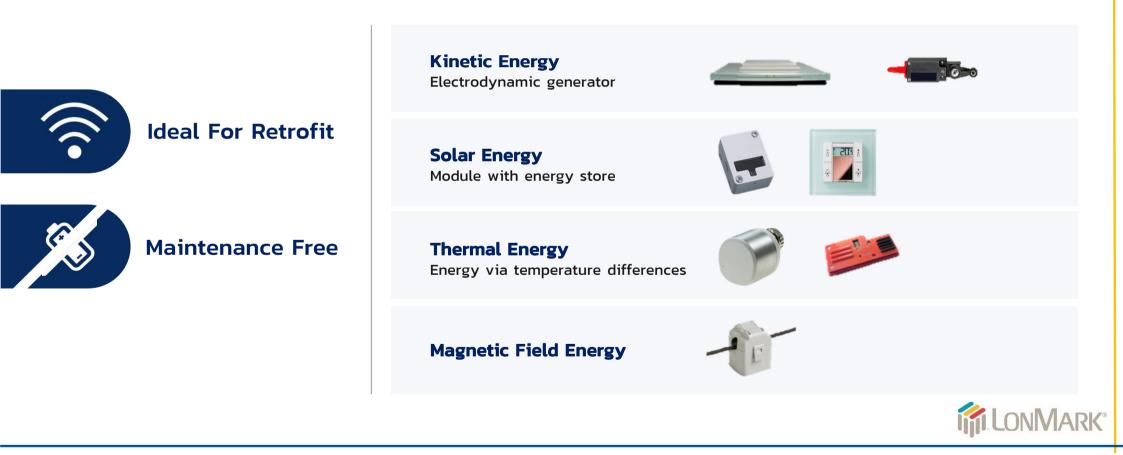
Wireless Infrastructure

Wireless Infrastructure Benefits

- 80% less cabling
- 20% less system cost
- Quick setup and adaption

Reliable Sensors are Required

Wireless sensors must operate reliably – sensor failure results in reduced office area usability



Energy Harvesting

Energy harvesting sensors deliver flexibility and reliability

The Value of Energy Harvesting

Energy harvesting enables universal adoption of wireless solutions

- Batteries are inexpensive, replacing them is not (labor to access, replace, test, and document plus service margin)
- Early failures are very annoying
- Batteries cause environmental harm and create safety risk

COST of Battery Replacement

TIME for Battery Replacement

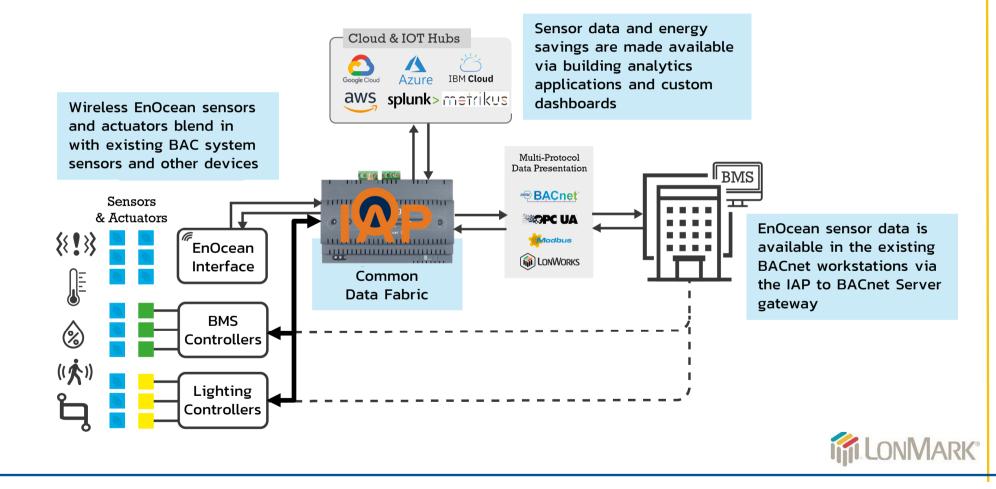
10,000 sensors project = 1 person-year

(typ. 10 min/sensor: access, replace, test, document) ENTIRE UK EMPLOYEES
32 MILLION

Trillion Sensors Vision: Entire UK working population will be required for battery service (100 Mio man-years /3a)

Example Energy-Harvesting Sensors for Smart Spaces

A wide range of energy-harvesting sensors is available for Smart Space applications


Smart Spaces and Building Controls Integration

EnOcean

22

Integrate Smart Spaces with BAC Systems

Example of EnOcean and BAC system integration using IAP

IAP Open Web Services Information

https://shop.cta.tech/products/https-cdn-cta-tech-cta-media-media-shopstandards-2020-ansi-cta-709-10-final 1-pdf

Consumer Technology Association	TOPICS	WHO WE ARE	RESOURCES	GET INVOLVED	JOIN CTA
Consumer Technology ANSI/CTA-709.10 September 2021	TH do (N	Network ANSI/C his standard is for pocuments two API fessage Queuing	software develo software develo relemetry Trans		e authors. It hich uses MQTT ort protocol, and
	А	vailable to Eve	ervone Š	0 ADD	TO CART

- IAP is an open ANSI/CTA standard ANSI/CTA-709.10
- IAP documentation is available at <u>https://edgedocs.enocean.com/</u>
- Open-source IAP application examples: <u>https://github.com/izot/smartserver-iot</u>
- Edge Server information: <u>https://www.enocean.com/en/product/smartserver-iot/</u>

Questions & Answers

EnOcean

Rich Blomseth

Director of Product Management EnOcean Edge Inc.

rich.blomseth@enocean.com https://www.linkedin.com/in/richblomseth